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SUMMARY

Risky decision-making is altered in humans and
animals with damage to the orbitofrontal cortex.
However, the cellular function of the intact orbitofron-
tal cortex in processing information relevant for risky
decisions is unknown. We recorded responses of
single orbitofrontal neurons while monkeys viewed
visual cues representing the key decision parame-
ters, reward risk and value. Risk was defined as the
mathematical variance of binary symmetric proba-
bility distributions of reward magnitudes; value was
defined as nonrisky rewardmagnitude. Monkeys dis-
played graded behavioral preferences for risky
outcomes, as they did for value. A population of orbi-
tofrontal neurons showed a distinctive risk signal:
their cues and reward responses covaried monoton-
ically with the variance of the different reward distri-
butions without monotonically coding reward value.
Furthermore, a small but statistically significant frac-
tionof risk responses also coded reward value. These
risk signals may provide physiological correlates for
the role of the orbitofrontal cortex in risk processing.
INTRODUCTION

Uncertainty is a ubiquitous component of our environment, such

that humans and animals are regularly confronted with condi-

tions that vary in degrees of uncertainty. It is therefore a funda-

mental requirement of our brain systems to accurately process

uncertain information so that we may function appropriately,

both in our mundane day-to-day activities and in more profound

moments.

Many brain regions including the frontal cortex, basal ganglia,

amygdala, parietal cortex, cingulate cortex, and insular cortex

have been identified as key areas in processing information

about uncertain rewards (Christopoulos et al., 2009; Fiorillo

et al., 2003; Huettel et al., 2006; Knoch et al., 2006; Kuhnen

and Knutson, 2005; Levy et al., 2010; McCoy and Platt, 2005;

Preuschoff et al., 2006, 2008; Tobler et al., 2009; Xue et al.,

2009). In particular, a large amount of research has focused on

the orbitofrontal cortex. Damage to the ventromedial and orbito-

frontal cortex leads to altered patterns of risky choice behavior

(Bechara et al., 1994; Clark et al., 2008; Hsu et al., 2005; Mobini
et al., 2002; Pais-Vieira et al., 2007; Rogers et al., 1999; Sanfey

et al., 2003). In accordance with these findings, activations in

the orbitofrontal cortex vary explicitly with risk (Critchley et al.,

2001; Hsu et al., 2005; Kepecs et al., 2008; Tobler et al., 2007).

In addition, neurons in the orbitofrontal cortex encode the value

of available reward in a large variety of behavioral situations and

in relation to the subjects’ preferences (Hikosaka andWatanabe,

2000; Kennerley et al., 2009; Padoa-Schioppa and Assad, 2006;

Peters and Büchel, 2009; Roesch and Olson, 2004; Thorpe et al.,

1983; Tremblay and Schultz, 1999; Wallis and Miller, 2003).

Thus, the orbitofrontal cortex appears to play an important role

in processing both reward risk and reward value.

Although the orbitofrontal cortex is implicated in processing

reward risk and value information, the capacity for individual

neurons in the orbitofrontal cortex to explicitly encode risk

information is unknown. We define risk as a form of uncertainty

measured by the variance or standard deviation of known

probability distributions of reward magnitudes (second central

moment), rather than the occasionally used common sensical

probability of losing. The purpose of this study was to test

whether reward risk is encoded by neurons in the orbitofrontal

cortex and, if so, to what extent such a risk signal would be

distinct from the known value signal in this cortical area. Since

risk is known to influence the subjective value of reward, a value

signal might also covary with risk without constituting a genuine

risk signal. Therefore, to identify a genuine risk signal, we found

it essential to search for a stand-alone neuronal risk response

that did not also encode value. To achieve this, we designed

a simple task in which monkeys were presented with visual

cues with distinct information about either the risk or the value

of an upcoming juice reward. We recorded neuronal data under

nonchoice conditions in which the monkeys had to perform an

ocular saccade to the same location at which a single cue had

been presented (left or right). Based on previous studies investi-

gating reward processing in the orbitofrontal cortex, we predom-

inantly targeted areas 11 and 13 (Kobayashi et al., 2010; Padoa-

Schioppa and Assad, 2006; Tremblay and Schultz, 1999; Wallis

and Miller, 2003). We found populations of orbitofrontal neurons

that tracked the risk in predicted and received rewards in amono-

tonic fashion. True to the requirement of genuine risk coding,

most of these neurons failed to also encode reward value.

RESULTS

Behavioral Preference for Risk and Value
This experiment varied separately the risk and value of liquid

rewards. We used a formal definition of risk characterized by
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Figure 1. Independent Variation of Risk and Value

(A) Variations in reward risk. R1–R3 represent binary distributions of reward magnitude with equal probability (p = 0.5). R1–R3 differ in statistical variance (hori-

zontal arrows), but not in expected value (dashed line).

(B) Variations in reward value. V1–V3 represent three reward magnitudes with fixed probabilities of p = 1.0.

(C) Graphical representation of the relationship between risk and value in (A) and (B).

(D) The trial types (R1–R3 and V1–V3), visual cues, and actual measures used in the experimental design. For the bar cues, the possible juice volumes to be deliv-

ered were represented by the elevation of the horizontal bars.
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Rothschild and Stiglitz (1970), namely themathematical variance

of a known probability distribution. According to this definition

the expected value (mean) is kept constant with different vari-

ances (the ‘‘mean-preserving spread’’). We employed three

levels of risk by using three different distributions with two equi-

probable reward magnitudes (p = 0.5 each) and identical

expected value. For example, as shown in Figure 1A, distribution

R3 is the most risky distribution, whereas distribution R1 has the

lowest risk. This definition of risk is consistent with those used in

previous behavioral and neurobiological studies (Christopoulos

et al., 2009; McCoy and Platt, 2005; Weber et al., 2004). We

tested reward value without risk by varying the reward magni-

tude (Figure 1B). Figure 1C shows the relationship between the

risk and value parameters. Figure 1D shows the actual measures

of the reward distributions used in the experiment.

Two rhesus macaque monkeys performed a saccadic eye

movement task for juice reward (Figure 2A). The animal touched

a key and fixated on a spot in the center of a computer monitor

while a visual cue was presented to the left or right of the spot.

Our cues used the vertical position of horizontal bars to repre-

sent the magnitude of reward that would be delivered (the higher

the bar, the greater the magnitude; Figure 1D). Risk conditions

were indicated by cues containing bars at low and high vertical
790 Neuron 68, 789–800, November 18, 2010 ª2010 Elsevier Inc.
positions, representing the low and high equiprobable reward

magnitudes, respectively. Cues with a single bar indicated that

there was no risk and that the reward magnitude represented

by the height of the bar would always be delivered (p = 1.0).

To control for visual components, we also used a set of abstract

fractal pictures for predicting outcome (Figure 1D).

We first quantified the monkeys’ behavioral preference for the

risky options in a choice task inwhich left or right eyemovements

indicated the monkeys’ preferred option. In choice trials,

monkeys chose between a safe option and a risky option (Fig-

ure 2B). The expected value of each risk option matched the

expected value of the safe option (V2 in Figure 1D) to detect

sensitivity to risk per se without confounding differences in

expected value. Both monkeys preferred the riskier options to

the safe option (Figure 2B; two-way ANOVA: main effect of

risk, F (2, 16) = 48.74, p < 0.001). The preference for risk was

not significantly different between the two cue sets (main effect

of cue set F (1, 8) = 0.18, p = 0.682; cue set 3 risk interaction,

F (2, 16) = 1.161, p = 0.338). In addition, we measured reaction

times to release the key during neuronal recording trials in which

single risk or value cues were presented. Figure 2C shows that

reaction times decreased as a function of increasing risk and

value. Single linear regressions revealed a significant effect of
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Figure 2. Behavioral Task, Measurements,

and Neuronal Recording Area

(A) Behavioral task. Visual cues were presented on

a monitor while monkeys fixated on a spot in the

center of the screen and contacted a touch-sensi-

tive key. For all neuronal recordings only one

cue was displayed per trial, to the left or right of

the fixation spot. After the fixation spot was

extinguished the monkey was required to make

a saccade to the sidewhere thecuewasdisplayed.

After a successful saccade, a red dot appeared

in this location for one second before turning

green, indicating that the trial was complete and

the key should be released to receive a juice

reward.

(B) Behavioral preference for the risky options.

In choice trials, two cues were presented simulta-

neously, on either side of the fixation spot.

After the fixation spot was extinguished, the

monkey was required to make a saccade to

either side. Options were always between the

medium value (safe) cue (V2 in Figure 1D) and

one of the three risk cues. Each point in the graph

shows the mean preference (±SEM), measured

as percent of risky choices. In all three risk condi-

tions both monkeys chose the risky option more

than 50% on average and the preference for

the risk option increased as a function of increas-

ing risk (two-way ANOVA: main effect of risk,

F (2, 16) = 48.74, p < 0.001). The preference for

risk was not significantly different between the two cue sets (main effect of cue set F (1, 8) = 0.18, p = 0.682; cue set 3 risk interaction, F (2, 16) = 1.161,

p = 0.338).

(C) Behavioral discrimination of risk and value during neuronal recording trials. Data points are mean reaction times (±SEM) to release the key for reward from

114 blocks of trials. Reaction times decreased as a function of increasing risk (p = 0.073) and value (p = 0.001), and the slope for risk was not significantly

different from the slope for value (p > 0.1; two-tailed t test).

(D) (Top) Sagittal view of the brain showing roughly the anterior-posterior extent of the region (thin vertical lines) where all neuronal data presented was

recorded. (Bottom) Coronal view of a slice of the left hemisphere at the anterior-posterior region indicated by the thick vertical line in the upper image of

the sagittal view. Shaded area denotes the targeted region of orbitofrontal cortex where all data presented was recorded from (±2.5 mm anterior-posterior).

Numbers refer to architectonic areas. PS, principal sulcus; AS, arcuate sulcus; CGS, cingulate sulcus.
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value (p = 0.001) and a lesser, not statistically significant, effect

of risk (p = 0.073). The difference in regression slopes (b)

between these regressions was nonsignificant (p > 0.1; two-

tailed t test). These findings are consistent with previous

evidence for risk-seeking behavior in macaques (Hayden and

Platt, 2007; McCoy and Platt, 2005).

Neuronal Data Analysis and Database
We sampled electrophysiological activity from 722 single orbito-

frontal neurons while the monkeys were presented with cues

predicting different levels of reward risk and/or value. We

recorded and saved the activity of neurons that appeared to

respond to at least one task event during online inspection of

several trials. This procedure resulted in a database from 262 or-

bitofrontal neurons, which we analyzed statistically in two

consecutive steps. In the first step we defined task-related

responses with the Wilcoxon test as significantly different

neuronal activity during a given task epoch compared with that

from a 1 s control period immediately preceding the central fixa-

tion spot. The task epochs analyzed were 0.1–0.6 s after cue

appearance; 0.5 s immediately before the saccade, key release,

and reward; 0.5 s immediately after the saccade and after key
release; and four nonoverlapping, consecutive epochs of 0.5 s

each after the reward. In the second step of the analysis, we as-

sessed the monotonic neuronal coding of the two specific

parameters of interest, namely risk and value of reward with

single and multiple linear regressions on the task-related

responses identified by the Wilcoxon test.

Risk Coding
The Wilcoxon test assessed all risky trial types together and

identified a total of 1462 task-related responses in 262 neurons,

with many neurons showing multiple task relationships. Single

linear regressions using the mathematical variance as risk

regressor (9, 36, 144 3 10�4) revealed that 160 of the 1462

task-related responses (11%) correlated significantly with risk

(p < 0.05, two-tailed t test against 0 slope). Figure 3A shows

four typical responses with positive correlation coefficients

during four different task epochs. Figure 3B shows population

averages of all responses with significant positive correlation

coefficients during the same four task epochs. Figure 3C shows

the numbers of responses with significant positive and negative

correlation coefficients at each task epoch. Table 1 shows the

numbers and percentages of significant risk coding responses
Neuron 68, 789–800, November 18, 2010 ª2010 Elsevier Inc. 791
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Figure 3. Orbitofrontal Neurons Code Risk

(A) Smoothed histograms showing examples of

individual risk-sensitive neurons to the cue, key

release, prereward, and postreward. For presen-

tation purposes the raster plots are rearranged

and blocked vertically by trial type (indicated by

the cues beside the leftmost raster plots). The

last ten trials for each trial type are displayed.

The shaded area shows the time window used

for analysis (correlation coefficients for all neurons,

p < 0.05, two-tailed t test).

(B) Smoothed histograms showing population

responses from all neurons with significant posi-

tive correlation coefficients for risk during the

shaded period (top panels). The bottom panels

show the mean firing rates (±SEM) during the

shaded period in the upper panels. Orange = low

risk; brown = medium risk; green = high risk.

(C) Numbers of risk-related responses with signif-

icant positive and negative correlation coefficients

in all task epochs.
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in each task epoch, amounting to 6%–18% of task-related

responses in the different epochs. The 160 risk-related

responses occurred in a total of 109 neurons. The majority of

these neurons (79/109; 72%) showed a significant response to

risk in only one task epoch, with some neurons showing signifi-

cant responses in two (24/109; 22%) or more (6/109; 6%) task

epochs. The 109 orbitofrontal neurons with risk-related res-

ponses were located in areas 11 (34 neurons), 12 (2 neurons),

13 (70 neurons), and 14 (3 neurons) (Figure 2D).

We also analyzed the 1462 task-related responses with stan-

dard deviation as risk regressor. Most risk responses displayed

significant correlations for both variance and standard deviation.

Figure 4 shows the close correlations between the r-squared

values derived from the analysis with the two risk regressors
792 Neuron 68, 789–800, November 18, 2010 ª2010 Elsevier Inc.
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(Pearson’s r = 0.97, p < 0.01). Similarly

small proportions of responses were

significant for only one of the two risk

measures (gray and white circles in Fig-

ure 4; c2 = 2, p = 0.2; chi-square test),

and varied closely around the statistical

threshold (p < 0.05). Because the mean

was constant across all trial types

involving risk, the coefficient of variation

(standard deviation/mean; Weber et al.,

2004) as risk measure resulted in the

same, albeit rescaled, results. Thus,

these closely related risk measures

produced very comparable results. For

reasons of simplicity, we will present all

data with variance as risk regressor.

Taking the square root of an indepen-

dent variable steepens the slope of the

relationship with the dependent variable.

Indeed, because standard deviation is

the square root of variance, the effect

size measured by the slope (b) was larger

for standard deviation than variance. The
nsigned mean b values were 0.81 for standard deviation and

.05 for variance.

It is possible that the neuronal responses to the cues reflected

e visual properties of the cues rather than the risk per se (Wallis

nd Miller, 2003). Therefore, we tested 113 of the 262 task-

lated neurons with the three risky bar cues and the three risky

bstract cues (Figure 1D). This sample included 19 neurons with

ue responses that showed significant positive correlations to

sk (they belonged to the 25 neurons with cue responses with

ositive slope shown in Figure 3B, left panels). Of the 19 neurons,

6 also showed significant positive risk correlation coefficients

ith the abstract risk cues (Figure 5); the remaining three

eurons responded to the abstract cues in the same fashion as

the bar cues, but without reaching significance. Thus, the



Table 1. Significant Risk Responses in Each Task Epoch

Task epoch Cue Pre-sacc Sacc Pre-kr Kr Pre-rew Rew1 Rew2 Rew3 Rew4 Total

Task-related 180 129 152 165 160 164 174 158 126 54 1462

Risk-sensitive 32 13 9 12 13 14 29 21 10 6 159

in percent 18 10 6 7 8 9 17 13 8 11 11

Slope (+/�) 25/12 10/3 7/2 7/5 8/5 14/0 20/9 15/6 5/5 4/2 115/44

Task-related responses were defined by theWilcoxon test (p < 0.05), and risk sensitivity was defined by single linear regression (p < 0.05; t test against

0 slope). Task epochs were as follows: 0.1–0.6 s after cue onset (cue); 0.5 s presaccade (pre-sacc), 0.5 s prekey release (pre-kr); 0.5 s prereward (pre-

rew); 0.5 s after saccade onset (sacc); 0.5 s after key release (kr); and four consecutive postreward epochs of 0.5 s each (rew1–rew4).
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Figure 4. Mathematical Variance and Standard Deviation Were Both

Considered as Measures of Risk

R-squared values from all neurons with significant correlation coefficients for

variance and standard deviation from separate single linear regression anal-

yses. Black circles represent neurons with significant r-squared values for

both variance and standard deviation. White circles represent neurons with

significant r-squared values for standard deviation and nonsignificant

r-squared values for variance. Gray circles represent neurons with significant

r-squared values for variance and nonsignificant r-squared values for standard

deviation. The r-squared values were significantly related (Pearson’s correla-

tion). Line represents unity, alongwhich both r-squared values would be equal.
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neuronal responses to the risky cues appeared to reflect the risk

information conveyed by the cues rather than their visual

properties.

Risk and Value Coding
Because the animals expressed behavioral preferences during

both risk and value trials, it was necessary to determine the

extent to which the neuronal responses reflected risk per se or

some aspect of value associatedwith the risky outcomes. There-

fore, we tested 493 of the sampled 722 orbitofrontal neuronswith

three value cues in addition to the three risky cues (Figure 1D).

This design allowed us to collect neuronal data from six different,

pseudorandomly alternating trial types in total, three of which

varied in risk but had constant expected value, and three that

varied in value with no risk (see Experimental Procedures for

a description of the task design with separate risk and value

trials). The Wilcoxon test identified 1083 task-related responses

in 98 orbitofrontal neurons that were investigated in both risk and

value trials; many neurons showed multiple task relationships.

We analyzed the 1083 responses with two separate linear

regressions on risk in the risk trials (variances of 9, 36, 144 3

10�4) and on value in the value trials (magnitudes of 0.18, 0.30,

0.42 ml). The average number of trials per neuron was 13 for

each of the three risk cues and 11 for each of the three value

cues.

Of the 1083 task-related responses, 201 (19%) correlated

significantly with risk, value, or both (p < 0.05, two-tailed t test

against 0 slope). Of these 201 responses, 45 responses varied

monotonically with risk only (Figure 6A), 138 responses varied

monotonically with value only (Figure 6B), and 18 responses

varied monotonically with both risk and value (Figure 6C), thus

resulting in a total of 63 risk responses and 156 value responses

(Tables 2 and 3). Of the 18 responses varying monotonically with

both risk and value, 13 responses coded both variables with the

same slope orientation and thus shared the same valence,

whereas the remaining 5 responses showed opposite valence

(green and gold sectors in Figure 6C, respectively). Figure 6D

shows a scatter plot of the significant t values of the regression

coefficients from risk and value responses.

To formally test whether the responses tended to code risk

and value separately or in combination, we performed a chi-

square test on a 2 3 2 contingency table of the significant and

nonsignificant responses for risk and value (Table 3). The result

suggested a significantly higher propensity for combined risk

and value coding as opposed to separate coding of the two vari-

ables in the population of responses (c2 = 11, p = 0.001).
The 201 risk- and value-related responses occurred in a total

of 98 neurons. These neurons did not show differential distribu-

tions between orbitofrontal areas 11 and 13, in which most of

these neurons were recorded (n = 94; c2 = 0.48, p = 0.49; chi-

square test). Separating the neurons according to their

responses to risk only, to value only, and to risk and value in

combination showed similar nondifferential anatomical distribu-

tions (c2 = 1.9, p = 0.38). The very few neurons (n = 4) recorded in

closely neighboring parts of area 14 were not included in the

chi-square test. Taken together, the risk- and value-coding

neurons described in this study were not differentially distributed

in the regions of orbitofrontal cortex investigated (shaded area in

Figure 2D).

We also compared the effect sizes for risk and value by using

the slopes (b) of the regressions. Although risk and value ranges

were chosen arbitrarily, some comparisons were possible

within the ranges used. The effect size for risk was smaller

compared with that for value when the mathematical variance
Neuron 68, 789–800, November 18, 2010 ª2010 Elsevier Inc. 793
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(A) Example of a single neuron with significant correlation coefficients for risk

for both the risky bar (p < 0.001, two-tailed t test) and abstract cues (p = 0.005,

two-tailed t test).

(B) Population responses of 16 neurons with significant correlation coefficients

for both cue sets. (Conventions same as in Figure 3).
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was used as risk measure (unsigned mean b values: p < 0.001;

two-tailed t test), and greater than that for value with standard

deviation (square root of variance) as risk measure (unsigned

mean b values: p < 0.001). Thus, the effect sizes for the two

risk measures straddled the effect size for value, suggesting

similar effects of risk and value within the ranges of risk and

value used.
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Risk Coding after Outcome
The risk-sensitive neuronal responses to reward delivery shown

in Figures 3A and 3B (right) and in Figure 6A were surprising

because the risk had been resolved at that point. Furthermore,

in the risky trials, the rewards occurred at the time of delivery

in one of the two fixed magnitudes of each binary distribution,

yet the risk-related responses appeared to covary with the risk,

irrespective of the low and high reward magnitudes actually

obtained. The fact that only a single magnitude of reward was

delivered in risky trials afforded us with an additional approach

for testing the coding of risk and value. Specifically, unlike the

previous linear regression analysis wherewe compared separate

single regressors on neuronal responses from separate trials,

we were able to use multiple regressions on the same neuronal

responses (to a single reward) in the same (risky) trials across

the two regressors, risk and value (reward magnitude). The

Wilcoxon test assessed the six risky trial types with their

different reward outcomes separately and identified 641

task-related responses during one or more of the four postre-

ward epochs in 231 orbitofrontal neurons, with many neurons

showing multiple postreward responses. We analyzed the 641

task-related responses with multiple linear regressions using

reward risk (variances of 9, 36, 144 3 10�4) and value (reward

magnitudes of 0.18, 0.24, 0.30, 0.33, 0.36, 0.42 ml) as

regressors.

Of the 641 postreward responses, 42 responses (7%) showed

significant partial correlation coefficients for risk, and 105

responses, for value (16%) (p < 0.05, two-tailed t test against

0 slope; Table 4). Figures 7A and 7B show the responses of

neurons with positive slopes for reward magnitude and risk,

respectively. Importantly, the responses in Figure 7B varied

monotonically with the risk associated with each reward, inde-

pendent of the reward magnitude (Figure 7C). For example, the

juice volumes 0.18 and 0.42ml were distinctly different in magni-

tude, but they were associated with the same amount of risk (see

Figure 1A) and drew the same neuronal response. As before, for

the chosen ranges of risk and value, the effect size for risk was

smaller compared to that for value when variance was used as

the risk measure (unsigned mean b values: p < 0.001; two-tailed

t test) and greater than the effect size for value with standard

deviation as the risk measure (unsigned mean b values: p <

0.001). Thus, plotting neuronal responses as a function of vari-

ance resulted in a flatter slope for risk compared with that for

reward magnitude (Figures 7A and 7B).

However, as a possible alternative to risk coding, the pattern

of activity observed in Figures 7B and 7Cmay represent nonmo-

notonic reward magnitude coding. In particular, the data from

risky trials, when plotted across reward magnitude (Figure 7C),

suggests quadratic reward magnitude coding. If this were the

case, these neurons should code reward magnitude nonmono-

tonically also in nonrisk trials. To assess this possibility, we

also tested 14 of the neurons presented in Figures 7B and 7C

with the nonrisky value cues (Figure 7D). These 14 neurons

showed 14 of the 32 risk responses with positive slope shown

in Figure 7B. Fitting the neuronal responses in value trials with

linear and quadratic functions revealed that 11 of these 14 risk

neurons (79%) did not code reward magnitude (linear and qua-

dratic least mean squares fits were both nonsignificant; F-test,
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Figure 6. Risk and Value Coding

(A) Example of an orbitofrontal neuron that coded the risk associated with reward and not value. The left panel shows the neuron’s firing rate during risk trials. The

middle panel shows the firing rate during value trials. The right panel shows the average firing rate (±SEM) during the shaded periods. Regression lines were fitted

to the risk (red) and value (blue) trials. Only the correlation coefficient for the risk trials was significant (p < 0.005, two-tailed t test).

(B) Example of an orbitofrontal neuron that codes the value and not the risk associated with reward. Conventions as in (A). Only the correlation coefficient for the

value trials was significant (p < 0.001, two-tailed t test).

(C) Pie chart of the percentage of responses characterized by significant correlation coefficients for risk and/or value.

(D) Scatter plot of significant regression coefficients (p < 0.05, two-tailed t test) for risk (red), value (blue), or both (green, equal valence; gold, nonequal valence).

The data points from responses that were nonsignificant for both variables are not shown for simplicity of display. Circles = saccade activity; triangles = key touch

activity; plus sign = reward activity.
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p > 0.05). Of the remaining three neurons, two showed significant

correlation coefficients for both quadratic and linear functions (F-

test, p < 0.03), and one showed a significant linear function only

(F-test, p = 0.04). Therefore, themajority of these neurons appear

to be coding reward risk rather than coding reward magnitude

nonmonotonically. In addition, these data indicate that 21% (3/

14) of reward risk coding responses potentially also code reward

value, which is similar to the proportion of risk responses also

coding reward value shown in Figure 6C (29%; 18/63; Table 2).

DISCUSSION

This study investigated the neuronal coding of reward risk, using

the statistical variance of binary probability distributions of

rewardmagnitudes as riskmeasure.We found that a group of or-

bitofrontal neurons coded information about reward risk in

a positive or negative monotonic fashion across three risk levels.

The risk coding occurred also with standard deviation as risk
measure and was independent of the visual aspects of the

risk-predicting cues. The majority of risk responses failed to

vary monotonically with value, suggesting genuine coding of

reward risk. However, a minority of risk-sensitive neurons also

encoded reward value, and their propensity for value coding

was significantly higher than that in the overall population of or-

bitofrontal neurons. Some orbitofrontal neurons also showed

risk coding after the rewardwhen the riskwas resolved. Thus, or-

bitofrontal neurons appear to vary monotonically with the first

two moments of probability distributions of reward magnitudes,

namely expected value and variance (risk).

Neuronal Processing of Risk
Previous studies investigating the neural basis of risk processing

in humans have used several versions of the Iowa Gambling task

and variations in reward probability (Bach et al., 2009; Bechara

et al., 1994; Clark et al., 2008; Critchley et al., 2001; Knoch

et al., 2006; Kuhnen and Knutson, 2005; Levy et al., 2010; Peters
Neuron 68, 789–800, November 18, 2010 ª2010 Elsevier Inc. 795



Table 2. Risk and Value Responses in Each Task Epoch

Task epoch Cue Pre-sacc Sacc Pre-kr Kr Pre-rew Rew1 Rew2 Rew3 Rew4 Total

Task-related 126 94 98 115 109 103 126 123 100 89 1083

Risk-sensitive 16 7 5 4 4 3 11 7 4 2 63

in percent 13 7 5 3 4 3 9 6 4 2 6

Slope (+/�) 10/6 4/3 4/1 3/1 4/0 3/0 6/5 3/4 1/3 2/0 40/23

Value-sensitive 42 9 6 16 2 11 22 20 18 10 156

in % 33 10 6 14 2 11 17 16 18 11 14

Slope (+/�) 19/23 4/5 3/3 8/8 1/1 8/3 15/7 15/5 10/8 6/4 89/67

Both sensitive 7 1 1 1 0 1 1 4 1 1 18

in percent 6 1 1 1 0 1 1 3 1 1 2

Slope (+/�/op) 4/3/0 0/1/0 0/1/0 0/0/1 0 1/0/0 1/0/0 1/0/3 1/0/0 0/0/1 8/5/5

The numbers and percentages of 63 risk-sensitive and 156 value-sensitive responses include the 18 responses sensitive to both risk and value.

Although 63 and 156 responses add up to 219, the total number of significant responses to both variables was 201 (= 156 + 63 – 18). op, opposite

slopes for risk versus value. Task epochs were as in Table 1.
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and Büchel, 2009; Xue et al., 2009). Other studies have assessed

riskprocessing according to thedefinition of riskasmathematical

variance or standard deviation of probability distributions used

in economics and finance (Rothschild and Stiglitz, 1970). This

definition provides a monotonic measure of risk, allowing

a simpler andmore straightforward identification of anybiological

response to the risk in the environment, as shown also by the use

of linear regression models in our study. Using this approach,

previous studies have identified risk processing in the human

frontal cortex, parietal cortex, cingulate cortex, striatum, and

amygdala (Christopoulos et al., 2009; Hsu et al., 2005; Huettel

et al., 2006; Sanfey et al., 2003; Tobler et al., 2009). Certainly

variations in probability can be expressed as nonmonotonic

changes in risk, and this has been done to identify the involve-

ment of frontal cortex, striatum, and dopamine neurons in risk

processing (Fiorillo et al., 2003; Preuschoff et al., 2006; Tobler

et al., 2007). However, task designs that manipulate variance

while holding probability constant are more straightforward

and have facilitated the identification of risk or utility signals

in single neurons in the posterior cingulate cortex (McCoy and

Platt, 2005) and of risk signals in our study in the orbitofrontal

cortex.

The onset of differential risk-related activity we observed in the

orbitofrontal cortex occurred as early as 100 ms after cue

presentation. This latency appears to be shorter than the risk-

related responses in dopamine neurons (Fiorillo et al., 2003)

and also possibly that in cingulate neurons (McCoy and Platt,

2005). Specifically, the risk-related responses in dopamine
Table 3. Risk and Value Responses

Value Nonvalue Total

Risk 18 45 63

Nonrisk 138 882 1020

Total 156 927 1083

Responses were grouped according to the statistical significance of the t

values for the regression slopes for each variable. Responses prefixed

with ‘‘non-’’ showed nonsignificant t values for the corresponding

regressor.
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neurons began relatively late after cue presentation and ramped

up gradually until reward delivery. In the cingulate cortex, the risk

or utility-related activity was most clearly observed after move-

ments had been initiated. Therefore, the risk-sensitive orbito-

frontal neurons observed in this study may constitute an early

component of a system that processes risky information,

perhaps before it is transmitted to other brain systems such as

the dopamine neurons and cingulate cortex. This early response

may possibly allow these orbitofrontal neurons to participate in

detecting risk in decision situations involving uncertainty.

Risk-Related Utility Coding
It is well known that risk influences the subjective value, or utility,

of uncertain choices and determines behavioral preferences

(Bernoulli, 1738). In common with our study, previous neuro-

physiological studies of risk processing did not directly address

whether the risk activity observed was dissociable from a utility

signal (Fiorillo et al., 2003; McCoy and Platt, 2005). A single-

unit study in the orbitofrontal cortex that used a behavioral test

for preferences provides a more direct assessment of utility

coding (Padoa-Schioppa and Assad, 2006), but this study only

employed certain, nonrisky outcomes. It would be possible to

directly investigate a risk-related utility signal by using a similar

design to that employed by Padoa-Schioppa and Assad

(2006), but with risky options similar to those used in our task.

Importantly, however, any such design would need to be able

to distinguish between a subjective value signal for risk and

a risk signal per se. For example, the risk signal in posterior

cingulate cortex reported by McCoy and Platt (2005) was equiv-

alent to the monkeys’ behavioral preference and was therefore

indistinguishable from a utility signal. Human studies have

used behavioral preferences to identify risk signals that depend

upon risk attitude (Christopoulos et al., 2009; Hsu et al., 2005;

Huettel et al., 2006; Tobler et al., 2007). Furthermore, a recent

study used this approach and provided evidence for combined

coding of value and risk in the lateral prefrontal cortex (Tobler

et al., 2009). Future single neuron studies of risk processing

will benefit from distinguishing the subjective value of risky

outcomes (utility) and the objective risk (mathematical variance).



Table 4. Risk and Magnitude Responses after Reward Delivery

Task epoch Rew1 Rew2 Rew3 Rew4 Total

Reward-related 185 172 145 139 641

Risk-sensitive 19 12 7 4 42

in percent 10 7 5 3 7

Slope (+/�) 13/6 9/3 6/1 4/0 32/10

Magnitude-sensitive 27 30 26 22 105

in percent 15 17 18 16 16

Slope (+/�) 19/8 16/14 13/13 17/5 65/40

Responses to reward delivery in the four postreward periods were iden-

tified by the Wilcoxon test (p < 0.05). The risk and magnitude sensitivities

were derived from subsequent multiple linear regressions in risk trials.

Note that only a single reward magnitude occurred in risk trials at the

time of reward delivery.
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Although we did not test explicitly for differences in utility, the

reaction time data seem to suggest a higher, albeit not signifi-

cantly different, impact of value compared with risk within the

ranges used with these two parameters (see Figure 2C). Based

on this possibility, our neurons responding to both value and

riskmight have processed the utility associated with the different

levels of risk. However, the value neurons that did not show risk

coding may have been coding a utility signal that was undetect-

able with the risk cues because the utility variation due to risk

might have been too small. Nonetheless, using standard devia-

tion as risk regressor produced a larger effect of risk compared

with value for the neuronal responses within the risk and value

ranges used. If risk contributed to utility, these data suggest

that the utility variation due to risk may not have been so small.
n = 65 n = 32

High risk
Med risk
Low risk

Reward magnitude neurons  Risk neuA B

Figure 7. Orbitofrontal Neurons Code Risk Also after Risk Is Resolved

(A) Reward magnitude coding following reward in risk trials. Data points show av

partial correlation coefficients for reward magnitude (p < 0.05, two-tailed t test).

(B) Risk coding following reward in risk trials. Postreward responses from risk tri

firing rates (±SEM) from 32 responses that had significant positive partial correla

(C) Same data from (B) plotted across reward magnitude, showing the nonlinear, q

function; F-test, p = 0.036).

(D) Risk responses did not code reward magnitude. Of the responses shown in (B)

average mean firing rates (±SEM) of these responses from the separate nonrisk

reward magnitudes.
Yet the responses of the value-only neurons failed to vary mono-

tonically with the risk. Furthermore, the argument of potential

utility coding would not apply to those risk-sensitive neurons

that did not show value coding, as value coding would be neces-

sary for utility coding.

It has been suggested that risk seeking might result from

nonlinear weighting of rewards (Pratt, 1964). Although it is

possible that the risk-seeking behavior of our monkeys was

a result of an overweighting of the potential high rewards, the

neuronal responses to risk alone are unlikely to be explained in

this way because most of the neurons activated by the high-

risk cue were not encoding value. Thus potential value coding

does not seem to offer a general explanation for the observed

risk coding in most of our risk-sensitive neurons.

Our finding that risk-coding neurons in the orbitofrontal cortex

do not also frequently encode reward value monotonically is

similar to previous findings indicating that populations of orbito-

frontal neurons that are sensitive to probabilistic, costly, or

delayed rewards are insensitive to absolute reward value

(Kennerley and Wallis, 2009; Roesch et al., 2006). Therefore,

reward outcome coding in orbitofrontal cortex appears to extend

beyond a simple coding of reward value, incorporating additional

information relating to outcomes, such as their riskiness, likeli-

hood, cost, and temporal properties.

Neuronal Coding of Risk after Risk Is Resolved
The risk signal we observed following reward delivery might

seem surprising given that risk has been resolved by this stage.

However, these data are not unprecedented: previous studies

have reported risk-dependent modulation of neuronal responses

to the delivery of different reward magnitudes in the orbitofrontal
rons  C

D

n = 14/32 (from B)

High Value
Med Value
Low Value

n = 32 (from B)

erage mean firing rates (±SEM) from 65 responses that had significant positive

als are from a different population of neurons from (A), showing average mean

tion coefficients for risk (p < 0.05, two-tailed t test).

uadratic relationship with reward magnitude (curve shows best fit to quadratic

, 14 were presented with both risk and nonrisky, value trials. Data points are the

y, value trials, showing the nondiscriminative responses to the fully predicted
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cortex (Roitman and Roitman, 2010) and posterior cingulate

cortex (Hayden et al., 2008). Although the latter study did not

vary risk monotonically, the data are strikingly similar to ours:

the study showed postreward responses to single outcomes

that were greater with no risk than with risk. Similar neuronal

responses at the time of outcome of uncertain decisions have

also been observed in the anterior cingulate cortex (Quilodran

et al., 2008). However, it should be noted that these risk-related

responses following reward delivery may represent other forms

of coding related to the reward, such as unsigned reward value

prediction errors. Further investigations are warranted to clearly

identify the relationship of postreward neuronal responses

following the resolution of risk. Nonetheless, such alternative

explanations do not apply to our data showing risk coding

preceding the reward.

Functional Overview
Under conditions of risk, the distributions of possible outcomes

are characterized by the mean outcome (expected value, the

first moment of probability distributions) and the risk (mathemat-

ical variance, the second central moment). Interestingly, in finan-

cial economics, mean-variance theory (Levy and Markowitz,

1979) is based on this distinction between expected value and

variance. Our data showing that some neurons in the orbitofron-

tal cortex encode these components separately would be

compatible with this notion. However, there are other economic

theories that provide alternative explanations for how reward

distribution information is processed under conditions of uncer-

tainty, such as expected utility theory (von Neumann and

Morgenstern, 1944) and cumulative prospect theory (Tversky

and Kahneman, 1992). Our data indicating a propensity of

combined risk and value coding would not be incompatible

with these two theories. Overall, these results might suggest

physiological correlates for these theories but should not be

taken to distinguish between their validity, because we have

shown that risk and value are processed in different ways within

the same brain structure.

Our findings offer an interpretation of the well-known dysfunc-

tional decision making under conditions of uncertainty following

damage to the orbitofrontal cortex in humans (Bechara et al.,

1994; Clark et al., 2008; Hsu et al., 2005; Rogers et al., 1999;

Sanfey et al., 2003). We have identified a monotonic risk signal

in the orbitofrontal cortex that occurs in neurons that do not

necessarily display a monotonic value signal. Thus, changes in

decision making under uncertainty due to orbitofrontal damage

may result from an inability to accurately process risk informa-

tion. The absence of these neurons may be crucial for the

deficient decision-making abilities of patients with orbitofrontal

lesions. The deficit in decision-making under uncertainty in

orbitofrontal patients may not represent a decision deficit of

the highest cognitive order, but these patients may simply

assess risks inappropriately because they do not have the risk

signal propagated by the orbitofrontal neurons. Impaired risk

processing would constitute a parsimonious explanation for

the deficits in risky decision-making following damage to the

orbitofrontal cortex and would provide a potential pathophysio-

logical correlate for these striking and severely incapacitating

behavioral deficits.
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EXPERIMENTAL PROCEDURES

Subjects and Surgery

We used two adult male rhesus monkeys (Macaca mulatta), weighing

10–14 kg. The monkeys were implanted, under general anesthesia, with

a head holder and stainless steel chamber on the skull to enable daily record-

ings of single neurons. All surgical and experimental procedures were per-

formed under UK Home Office License in accordance with the requirements

of the United Kingdom Animals (Scientific Procedures) Act 1986.

Behavioral Task

During training and testing, the monkeys were on a restricted water schedule

6 days of the week with 24 hr water ad libitum. The monkeys were trained to sit

in a restraining chair in front of a computer monitor with the head fixed and

perform a memory-guided saccade task. An aperture in the front of the chair

provided access to a touch-sensitive key. To commence a trial, monkeys

were required to fixate on a red spot in the center of the monitor and contact

the key. After 1.5 s, cues were displayed, in a pseudorandomized order, to the

left or right of the fixation spot for 0.5 s (Figure 2A). Fixation was maintained for

a further 2 s before the center spot extinguished and this was the signal for the

monkey to make a saccade to the left or right. A red fixation spot then

appeared in this peripheral location and the monkey was required to fixate

on this spot for 1 s before the spot turned green, which signified the end of

the trial, and at which point monkeys could break fixation and were required

to release contact with the key. Juice reward was delivered 1 s later. The

beginning of the next trial was indicated by the appearance of the central

fixation spot 3.5 s after the reward. Thus, the intertrial interval was 3.5 s, and

the total cycle time (trial duration + intertrial interval) was 10.5 s. The task con-

tained two categories of trials: imperative trials (as shown in Figure 2A), in

which a single cue was shown at either side of the central fixation spot and

the monkeys were required to make a saccade to that location; and choice

trials (Figure 2B), in which two cues were presented, one on either side of

the fixation spot, and the monkeys indicated their choice by making a saccade

to either location. The choice trials enabled assessment of the monkeys’

behavioral preference between the risky options and a safe option. Only imper-

ative trials were used during neuronal recording, and reaction time to key

release following the appearance of the green spot was measured.

The visual cues predicted the volume of juice to be delivered at the end of

each trial (Figure 1D). Juice delivery was controlled by a solenoid and

custom-designed software on a Macintosh IIfx computer (Apple). Juice

volume was explicitly represented by the elevation of the horizontal bars.

A single bar indicated that a certain volume of juice would be delivered

(p = 1; value cues). Two bars indicated one of two possible juice volumes

would be delivered (p = 0.5; risk cues). It was possible that the monkeys

preferred cues based on the visual properties (i.e., bar height) and likewise

the neuronal activity may have been sensitive to the visual properties of the

cues. Thus, an additional set of risk cues (abstract fractal images) was used

to control for any visual effects on behavioral and neuronal measurements,

and these were pseudocounterbalanced between monkeys (Figure 1D).

Also, if monkeys valued the risk cues differentially, it is possible that differential

neuronal activity in risk trials might reflect a subjective value signal rather than

a risk signal per se. We tested this hypothesis by comparing the activity of

a given neuron between risky trials and value trials. In summary, during

recording in imperative, single-cue trials, the cues were presented in two

blocks: a visual control block, consisting of three risky bar cues and three risky

abstract cues (Figure 1D); and a value control block, consisting of three risky

bar cues and three value bar cues (Figure 1D).

Neuronal Recording

Stereotaxic coordinates (Paxinos et al., 2000) were used to locate an area on

the skull that was removed to enable access to the orbitofrontal cortex. In

monkey A, after recording was completed, recording sites were marked with

small electrolytic lesions (20 microamperes 3 20–60 s). The animal received

an overdose of pentobarbital sodium (90 mg/kg, i.v.) and was perfused with

4% paraformaldehyde in 0.1 M phosphate buffer through the left ventricle of

the heart. Recording positions were reconstructed from 50 mm thick, stereo-

taxically oriented coronal brain sections and stained with cresyl violet. As
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histological reconstruction was not available for monkey B for reasons of

ongoing recordings, we reconstructed recording positions approximately. In

Figure 2D, for reasons of simplicity, we collapsed recording sites from both

monkeys spanning roughly 5 mm in the anterior-posterior dimension onto

the same coronal outline. A small number of neurons (n = 8) were recorded

from the right hemisphere in animal A within the same architectonic regions

as those in the left hemisphere. No significant correlations were found between

neuronal positions and responses.

Data Collection

Eyemovements (behavioral choice data) were monitored using an infrared eye

tracking system with 5 ms resolution (ETL200; ISCAN). The percentages of

risky choices were analyzed with a two-way repeated-measures ANOVA

with risk and cue type (bars or abstract) as factors. Reaction times to key

release were analyzed by two single linear regressions across the three value

and the three risk measures. We compared the slopes (b) of the two regres-

sions to determine the effect sizes of these two parameters.

We recorded neuronal activity during imperative trials from single orbitofron-

tal neurons, typically in 20–30 min sessions, using standard electrophysiolog-

ical techniques including online visualization and discrimination of neuronal

impulses on oscilloscopes. Timings of neuronal discharges were stored by

custom-made software running on a Macintosh IIfx computer (Apple).

Typically, 10–15 trials of each trial type were performed per neuron.

Data Analysis

We analyzed the activity of each neuron in specific task epochs: 0.1–0.6 s after

cue onset; 0.5 s immediately preceding the saccade, key release, and reward;

and 0.5 s immediately following the saccade and the key release. The saccade,

key release, and reward were R1 s apart, thus warranting separate analysis

epochs. Also, we assessed immediate and tardive reward responses in four

nonoverlapping, consecutive postreward epochs of 0.5 s each.

The analysis of the neuronal data comprised two consecutive steps: first

identifying each specific task relationship as significant change of neuronal

activity related in time to a given task event, and then determining the param-

eter coded by these responses.

Identification of Task Relationship

First, we identified task-related responses by comparing neuronal activity in

each task epoch of all risk and value trials against a 1 s control period imme-

diately preceding the central fixation spot. We used the paired Wilcoxon test

on single trials, the pair consisting of the specific task period being tested

and the control period (p < 0.05, two-tailed). A task-related response was

defined as a significant change in activity between a given task epoch and

the control period.

Assessment of Coded Parameters

The second step of the analysis used linear regression models on the task-

related neuronal responses identified previously by the Wilcoxon test. In this

initial risk study on orbitofrontal cortex, we aimed to separate as much as

possible the risk and the value information for the animal, and presented in

separate trials the risk cues with the two possible reward magnitudes (and

constant mean magnitude) and the value cues with only single reward magni-

tudes possible (and constant no-risk) (Figures 1A, 1B, and 1D). Thus, adequate

regressions of neuronal responses on risk and value in separate trials required

separate single linear regressions. The regressors were the variance in risk

trials (9, 36, 144 3 10�4) and juice volume in value trials (0.18, 0.30, 0.42 ml).

The variance of a probability distribution is defined as:

var=
X

i

pi � ðxi � EVÞ2; for i= 1 to n

which, when applied to our probability distributions, is:

var= 0:5 � ðxlow � EVÞ2 + 0:5 � �xhigh � EV
�2

where p is probability of reward, x ismagnitude of reward, EV is expected value

[EV = Si (pi * xi), i is index, and n is number of elements in the distribution

(outcomes)]. In a variation of this model, we used standard deviation (0.03,

0.06, 0.12 ml) as risk regressor (square root of variance) instead of variance.

In a further variation, we assessed the risk responses to the bar and abstract
cues in separate regressions, in order to distinguish response relationships to

the risk information conveyed by the cues from their visual sensory properties.

The slopes of the linear regressions reflected the change in impulse activity

per unit of risk and value (impulses/s/ml), which is a direct physiological

measure of risk and value sensitivity. In an attempt to compare the effect sizes

of risk and value coding, we carried out a two-tailed t test on the unsigned

b values for value versus risk, using variance and standard deviation as risk

regressors separately.

As a formal test for independent coding of risk and value in the population of

responses, we counted the total number of significant and nonsignificant

responses for risk and value and entered these counts into a 23 2 contingency

table. We then carried out a chi-square test for independence on the contin-

gency table.

A second regression model tested further the postreward responses in risk

trials with amultiple linear regression on risk and rewardmagnitude. At the time

of reward, in risk trials, only a single reward magnitude was delivered, and all

risk trials contained information about both the risk associated with that trial

and the actually delivered reward magnitude. Thus the multiple linear regres-

sion tested in the risk trials whether the same neuronal responses following

reward (y values) varied with risk or reward magnitude (two x values). Reward

amounts in these trials were 0.18, 0.24, 0.30, 0.33, 0.36, and 0.42 ml. This

analysis enabled us to assess more directly whether the responses coded

the past risk related with reward magnitude or signaled the magnitude of the

reward delivered.

The results of this analysis revealed that linear risk-related responses might

alternatively be interpreted as nonmonotonic reward magnitude responses. If

this were the case, these neurons should also respond to reward magnitude

nonmonotonically in nonrisky trials. To assess this possibility, we tested

a subpopulation of these neurons with the nonrisky value cues and fit the

neuronal responses in value trials with linear and quadratic functions using

curve estimation regression in PASW Statistics (v18.0; IBM, Chicago, IL).
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