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The amygdala is a key structure of the brain’s reward system. Exist-
ing theories view its role in decision-making as restricted to an early
valuation stage that provides input to decisionmechanisms in down-
streambrain structures. However, the extent towhich the amygdala
itself codes information about economic choices is unclear. Here, we
report that individual neurons in the primate amygdala predict be-
havioral choices in an economic decision task. We recorded the ac-
tivity of amygdala neurons while monkeys chose between saving
liquid rewardwith interest and spending the accumulated reward. In
addition to known value-related responses, we found that activity
in a group of amygdala neurons predicted the monkeys’ upcoming
save–spend choices with an average accuracy of 78%. This choice-
predictive activity occurred early in trials, even before information
about specific actions associatedwith save–spend choices was avail-
able. For a substantial number of neurons, choice-differential activity
was specific for free, internally generated economic choices and not
observed in a control task involving forced imperative choices. A
subgroup of choice-predictive neurons did not show relationships
to value, movement direction, or visual stimulus features. Choice-
predictive activity in some amygdala neurons was preceded by tran-
sient periods of value coding, suggesting value-to-choice transitions
and resembling decision processes in other brain systems. These
findings suggest that the amygdala might play an active role in
economic decisions. Current views of amygdala function should be
extended to incorporate a role in decision-making beyond valuation.
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The amygdala is a key structure of the brain’s reward system,
and it is involved in value-guided behavior. Damage to the

amygdala in humans is related to changes in decision-making
under conditions of ambiguity (1) and risk (2). In monkeys and
rats, amygdala lesions impair reward-related and affective be-
havior (3, 4). Individual amygdala neurons respond to basic re-
warding and aversive stimuli (5, 6), code expectations about
rewarding and aversive outcomes (7–10), and update the positive
and negative values of conditioned stimuli during learning (9–11).
In human imaging studies, amygdala activation is associated with
basic rewards (12), decision variables (13), and decision-related
emotions (14). Together, these findings suggest an important
contribution of the amygdala to economic decision-making in
addition to its well-known roles in emotion and fear conditioning
(5, 14–19). However, the specific nature of this contribution is
currently unknown.
Existing theories of the amygdala view its role in decision-

making as restricted mainly to the evaluation of choice options (1,
14, 20), which may serve as input for decision mechanisms in
downstream brain structures. Although this view ties in well with
known amygdala functions in reward (3, 5, 21), Pavlovian learning
(4, 11), and emotion (14–20), it may be premature to conclude
that the role of the amygdala in decision-making is confined to the
valuation stage. Crucially, the information coded by individual
amygdala neurons during economic decision-making has not been
systematically explored. Therefore, it is currently unclear whether
information processing in the amygdala ends with the coding of
values or whether its neurons also carry information about up-
coming economic choices.

Here, we report that the activity of single neurons in the primate
amygdala predicted behavioral choices in an economic reward–
saving task. The decision task temporally dissociated the economic
choice from the process of action selection, which allowed us to
assess neuronal choice coding independently from action coding.

Results
Twomonkeys performed in a free choice economic task (Fig. 1A).
The animals chose between saving a liquid reward with interest
for future trials and spending the already accumulated reward
immediately. The increase of reward magnitude over successive
save choices was determined by a geometric series (Eq. 1),

xn = b
Xn−1

i=0

qi; [1]

with xn as the reward magnitude on trial n, b as the base rate of
reward magnitude, and q as the interest rate, resulting in exponen-
tial increases for higher interest rates (Fig. S1). Monkeys indicated
their choices by a saccade to the visual save or spend cue. Notably,
the task temporally dissociated the internal process of save vs.
spend choice, which could occur before the saccade targets were
presented, from the process of left vs. right action selection.
The monkeys also performed in an imperative task with the

same visual cues but small dots indicating the required target
choice. This imperative task was a useful control to examine the
extent to which choice-related neuronal activity would also occur
when choices were externally instructed. We matched the ratio of
save to spend trials in the imperative task to the ratio observed in
the free choice task for a given monkey and a given interest rate.

Behavioral Data.The monkeys took advantage of the nature of the
reward–saving task by making more consecutive save choices
with higher interest rates (Fig. 1B). The spend probability at any
point in a save choice sequence depended on the number of
preceding save choices since the last spend choice (P < 0.003,
repeated measures ANOVA). There were also slight differences
in saving between monkeys (interaction between interest rate
and animal identity; P < 0.003, repeated measures ANOVA). To
further examine these effects, we constructed an index that
reflected preferences for longer save sequences (SI Methods).
For both monkeys, this index increased with higher interest rates
(P < 0.03, linear regression) (Fig. 1C). The average index across
interest rates was also higher for monkey A compared with
monkey B (P = 0.005, paired t test) (Fig. 1C Inset), indicating a
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stronger preference for saving over multiple trials. Thus, in both
animals, save sequences became longer with higher interest
rates, although saving behavior differed slightly between animals.
We modeled the monkeys’ trial-by-trial choices with a logistic

function of the differential subjective value of spending or saving
on a given trial (Methods). Logistic regressions suggested that the
differential value of spending on the present trial vs. spending on
any potential subsequent trial of the same save sequence pro-
vided a good fit to the monkeys’ behavior (Fig. 1D, Fig. S2, and
Table S1). Thus, the monkeys’ choices were guided by the reward
value of potential future trials in a save sequence. Moreover,
saving behavior was better explained by this differential value
model compared with a simpler model based only on the mon-
keys’ average choice probabilities (SI Results). This finding sug-
gested that monkeys incorporated trial-by-trial variations in
subjective value rather than using a simple counting strategy.

To confirm that monkeys tracked accumulated rewards over
consecutive save choices, we offered them, on randomly selected
control trials, a choice between the accumulated reward and fixed
reward amounts, which were indicated by pretrained visual cues.
Both animals consistently chose the fixed reward when it exceeded
the saved magnitude (Fig. 1E) (P < 0.001, Mann–Whitney test).
This result suggested that monkeys kept track of accumulated
rewards over successive save trials and based their choices on
this information.
Analysis of licking durations confirmed that monkeys distin-

guished save–spend trials in both free choice and imperative
tasks even before cue appearance (Fig. S3). Furthermore, per-
formance levels were similar for both tasks (80% and 76% cor-
rect trials in the free choice and imperative tasks, respectively).
These observations suggested that monkeys anticipated save and
spend choices in the imperative task.

Neuronal Activity. We recorded the activity of 329 task-related
amygdala neurons and used multiple regression analysis to test for
coding of the monkeys’ upcoming save–spend choices before the
behavioral responses (Methods). We included several reward value
measures as regression covariates and estimated their coefficients
simultaneously with choice coefficients. This method ensured that
significant choice coefficients were not confounded by value coding.
The choice-related activity of the neuron shown in Fig. 2 was

higher before spend choices compared with save choices (P =
0.026, t test for the save–spend coefficient) (Fig. 2 A and E).
Importantly, save–spend differences occurred only in free choice
and not imperative trials (Fig. 2 B and F). Multiple regression
revealed that the neurons’ activity was unrelated to different
measures of value (Fig. 2 C, E, and G). The activity did not
predict upcoming left or right eye movements, and it was in-
dependent of visual cue position or reaction time (Fig. 2 D, G,
and H). Taken together, the neuron’s response predicted the
behavioral choice to save or spend irrespective of value, action,
and other measured choice parameters.
Of 846 task-related responses in 329 neurons, 127 responses in

94 neurons (29% of the neuronal population; 50 and 44 neurons
from monkeys A and B, respectively) showed choice-predictive
activity (i.e., differential activity for upcoming save–spend choices
as defined by a significant choice regressor) (Fig. 3A and Table 1).
Task-related responses were defined by comparing a neuron’s
activity in a given task period with the neuron’s activity in a con-
trol period (P < 0.05, Wilcoxon test) (Methods). In addition to
choice coding, we confirmed the known value coding (8, 11, 22) in
140 amygdala neurons (43% of the neuronal population). Among
the 127 choice-predictive responses, 85 responses (67%) showed
no value coding, and 42 responses showed conjoint choice and
value coding (Table 1). Only a few neurons showed relationships
with left vs. right actions or reaction times (SI Results).
These data suggest that a substantial fraction of amygdala

neurons carried choice-predictive information. The question ari-
ses whether these neurons genuinely coded economic choices or
whether choice-predictive activity reflected differential reward
expectation on save–spend trials. To address this question, we
tested 156 neurons in both the free choice and imperative control
tasks. If a neuron coded economic choices rather than reward
expectations, its choice-predictive activity should be specific to the
free choice task. Of 156 neurons tested in both tasks, 56 neurons
showed choice-predictive activity during free choices. Among
them, 45 neurons (80%) failed to predict choices on imperative
trials (P < 0.001, binomial test for choice coding only in free
choice vs. both tasks). In these 45 neurons, 41 responses showed
higher activity on spend than save trials, and 16 responses showed
the opposite pattern (Fig. 3B) (P < 0.001, two-tailed binomial
test). Across all neurons tested in both tasks (not selected for
choice coding), simple save–spend differences were small and
mainly restricted to cue and outcome periods (Fig. 3C). As be-
havioral data showed, reward expectation was similar in free
choice and imperative tasks (Fig. S3). Thus, specificity of save–
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Fig. 1. Behavioral task and economic choice behavior. (A) Sequence of
events in the free choice save–spend task. Monkeys indicated their choices
with a saccade to one of two visual cues. Specific cues predicted save and
spend options; different save cues indicated different interest rates. (B)
Monkeys made more consecutive save choices with higher interest rates.
Percentage of observed save sequences in six representative sessions with
different interest rates (q). (C) Saving index increased as a function of in-
terest rate (monkey A: R2 = 0.61; monkey B: R2 = 0.71; both P < 0.03, linear
regression), and mean index differed between monkeys (Inset; P = 0.005,
paired t test; error bars denote ± SEM). (D) Spend probability as a function of
differential subjective value between save and spend options (color code is
the same as in C, and curves represent logistic fits to choice data). Inset
shows standardized logistic regression coefficients (both P < 1 × 10−8, t test
for logistic regression coefficient; error bars denote ± SEM). (E) Control test
with fixed reward. On random trials (in sessions with the same interest rate),
monkeys chose between a fixed reward (0.11 or 0.51 mL, indicated by dif-
ferent cues) and the accumulated saved amount. Intersections between
horizontal gray lines and choice curves (exponential fits) indicate points of
subjective indifference between fixed and saved rewards.
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spend differences for free choices in these 45 neurons implied that
their activity did not reflect differential reward expectation.
To examine relationships between choice-predictive activity and

other decision parameters, we performed additional tests. Across
choice-predictive responses, we searched for trials in which mon-
keys were, on average, indifferent between saving and spending.We
identified 55 responses in 39 neurons in which this criterion was
fulfilled [medianP (spend)= 0.5; median number of successive save
choices after which indifference was observed was three, depending
on the interest rate]. We then tested whether neuronal activity on
indifference trials tracked trial-by-trial choices. Across these 55
responses, activity was significantly higher for each neuron’s pre-
ferred compared with nonpreferred choices (Fig. 3D) (P < 0.001,
Wilcoxon test), despite identical choice probability and value-re-
lated decision variables. In another test, we evaluated whether
choice coding remained constant over changes in interest rate.

Among the 45 neurons in which choice-predictive activity was
specific to the free choice but not the imperative task, 20 neurons
were also tested with different interest rates. The majority of these
neurons (16/20, 80%) showed a significant choice regressor, despite
changed interest rate and visual save cues (Fig. S4).
A subgroup of 37 choice-predictive responses (31 neurons,

20% of neurons tested in both tasks; 16 and 15 neurons from
monkeys A and B, respectively) showed the same characteristics
as the neuron in Fig. 2; this subgroup predicted upcoming save–
spend choices, but it failed to predict choice in imperative trials
and failed to code value, action, visual stimulus position, and
reaction time (Fig. 3E). As a useful control, less than 5% (our
statistical threshold) of neurons exhibited such characteristics
only in the imperative task and not in the free choice task, sug-
gesting that this response pattern was not caused by random
variability (P < 0.001, χ2 test comparing proportions of such
response types in both tasks). Thus, a group of amygdala neurons
coded the monkeys’ economic choices largely independent of
value, action, and other choice parameters.
To quantify the degree to which economic choices could be

predicted from neuronal activity, we used a biologically plausible
classifier (23) as well as, independently, linear discriminant anal-
ysis to decode choices from trial-by-trial impulse rates. Notably,
classifications used data from individual trials, which reflect the
information propagated to the next downstream neuron during
decision-making.We focused on those 57 responses that predicted
choices in the free but not imperative task (although similar results
were obtained with all 127 choice-predictive responses) (Fig. S5).
On average, neuronal responses predicted save–spend choices
with an accuracy of 78% (80% for the biologically plausible clas-
sifier; 76% for linear discriminant analysis) (Fig. 3F and Fig. S6).
Combining responses, the classifier predicted choices with an ac-
curacy of 91% (P < 0.001, permutation test with 1,000 iterations)
(Fig. 3F). Increases in accuracy as responses were combined (Fig.
3F) indicated that neurons contributed partly independently to
the prediction.
Of 45 neurons with choice coding only in the free choice task,

23 neurons were from the dorsal amygdala, 1 neuron was from
the lateral amygdala, 10 neurons were from the basomedial
amygdala, 9 neurons were from the basolateral amygdala, and 2
neurons were from the basoventral amygdala (Fig. 3G and Fig.
S7). We were unable to identify systematic differences between
recording sites (nonsignificant χ2 tests); therefore, in line with
previous studies (6, 24), we present the neuronal data as one set.
In perceptual decision-making, individual neurons in parietal

cortex and related systems exhibit transitions from coding of
decision variables to coding of perceptual choices (25, 26). Such
signals are often interpreted as correlates of decision processes.
To test for analogous value-to-choice transitions, we identified
neurons with significant choice coding and in the same or pre-
ceding task period, significant value coding, and we examined the
related temporal dynamics using sliding window regressions
(Methods). We found 39 responses (33 neurons) in which value
coding in different task periods preceded choice coding (Fig. 4).
Among them, 22 responses (19 neurons) were also tested in the
imperative task. None of them coded choices in imperative trials.
The mean latency difference between the onset of value and
choice coding was 1,741 ± 302 ms (SEM). Such responses might
reflect translations from value to choice coding, resemble per-
ceptual decision processes in other brain systems (25, 26), and
match predictions from computational models of decision
mechanisms (27–29).

Discussion
The present data show that the activity of individual amygdala
neurons predicts behavioral choices during economic decision-
making. In many neurons, choice-predictive activity occurred be-
fore information about specific behavioral responses was available
to the monkeys. This finding suggested neuronal coding of the
abstract economic save–spend choice rather than specific actions.
For a large proportion of choice-predictive neurons that were
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Fig. 2. Choice coding in an example amygdala neuron. (A) Choice-predictive
activity in the free choice task. Activity time courses and raster plots for save
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trial; each dot represents one impulse. The regression coefficient for save–
spend choice was significant (P = 0.026, t test) in the cue period before the
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as both cues appeared in all trials. (B) Activity in the imperative control task did
not distinguish between save–spend trials. (C) Activity in save trials did not
track accumulated reward over successive save trials (one to four saves). (D)
Activity failed to distinguish between left/right eye movements or visual cue
positions (save cue left/right). (E) Trial-by-trial record of activity across save–
spend choices (black trace, neuronal activity in the cue period; blue trace,
spend probability; black/red crosses, save–spend trials; vertical bars, value;
magenta/green, reward magnitude/differential value). (F) Trial-by-trial record
during the imperative task. (G) Activity did not track reward magnitude, dif-
ferential value, or reaction times (all P > 0.3, t test on regression coefficients).
(H) Trial-by-trial record across left–right actions and cue positions.
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tested in both free choice and imperative tasks, choice-predictive
activity was specific to free, internally generated choices. The in-
clusion of value covariates ensured that choice coding could not be
explained in terms of reward value or related decision variables.
Choice-predictive activity in a subgroup of neurons was irre-
spective of value, action, visual cue position, or other measured
parameters. Taken together, neurons with such responses seem to
code the monkeys’ economic choices in a predictive manner.
A potential alternative explanation is that the choice-predictive

activity might reflect differences in reward expectation, because
immediate rewards were only available on spend but not save

trials. However, several observations seem incompatible with this
interpretation. First, in the majority of neurons tested in both
tasks, choice-differential activity was not observed during the ex-
ternally instructed imperative task, despite similar reward timing
(although in some neurons, choice-predictive activity persisted
during imperative trials). Second, reaction time and licking dif-
ferences between save–spend trials, potentially reflecting differ-
ential reward expectation, were similar in both tasks (Fig. S3), and
many choice-predictive neurons did not track them (SI Results).
Third, a previous study showed that reward expectation-related
activity in amygdala neurons covaried with the temporal distance
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Fig. 3. Choice-predictive activity in amygdala neu-
rons. (A) Four example neurons with choice-predictive
activity in different task periods. Out-1 data were
sorted according to choice on the next trial. Arrows
indicate first period with significant choice regressor.
Shaded regions indicate SEM. (B) Population time
courses of z-normalized activity for 57 responses that
predicted choice in the free task but not in the im-
perative task [Out-1 (outcome period of previous trial):
n = 8; PreFP (before fixation spot): n = 16; FP (during
fixation): n = 20; Cue (cue period): n = 13). (C) Pop-
ulation time courses of z-normalized activity for all 421
responses that were tested in both tasks (not selected
for choice prediction) sorted into save–spend trials. (D)
Mean normalized activity of 55 choice-predictive
responses on trials in which monkeys were indifferent
between spending and saving sorted according to
trial-by-trial choice. (E) Relationships between choice
and value coding. Standardized choice regression
coefficients plotted against coefficients for reward
magnitude (Left) and differential value (Right). Blue,
significant choice but not value coefficients (Left, n =
87 responses; Right, n = 106 responses); green, sig-
nificant value but not choice coefficients (Left, n =
137 responses; Right, n = 37 responses); magenta, significant choice and value coefficients (Left, n = 36 responses; Right, n = 14 responses); yellow, 37 responses (31
neurons) coding choice only during free choices without coding value; orange, 20 responses (14 neurons) coding choice only during free choices and coding value.
(F) Decoding choices from neuronal activity. Accuracy (percent correct classification) of a biologically plausible classifier (23) using 57 responses with choice coding
only during free choice. Blue bars, mean accuracy (±SEM) for classification based on individual responses; gray bars, accuracy for combining data across responses.
Chance performance was 50%. (Right) Increases in accuracy (mean ± SEM) as responses were combined. Black trace, accuracy for randomly permuted data. (G)
Histological reconstruction of recording sites. Locations of all 94 choice-predictive neurons (black symbols) and 45 neurons with choice coding only in the free choice
task (red symbols) overlaid on a section from a stereotaxic atlas showing approximate amygdala subdivisions [45; the rhesus monkey brain in stereotaxic coor-
dinates, Paxinos G, Huang XF, Toga AW, p 1, Copyright Elsevier (2000)]. Yellow symbol, example neuron from Fig. 2. Collapsing in the anterior–posterior dimension
resulted in symbol overlap.

Table 1. Numbers of neurons with significant value and choice coefficients in different task periods and numbers
of total significant responses summed over task periods

Total neurons* Total responses† Out-1 Pre FP FP Cue

All
Task-related 329 846 144 327 210 165
Value‡ 140 (43%) 225 (27%) 65 (45%) 49 (15%) 67 (32%) 44 (27%)
Choice§ 94 (29%) 127 (15%) 19 (13%) 27 (8%) 38 (18%) 43 (26%)

No value/value/complex{ 59/25/10 85/42/— 9/10/— 22/5/— 26/12/— 28/15/—
Imperativek

Task-related 156 421 76 155 104 86
Value 76 (49%) 115 (27%) 28 (37%) 25 (16%) 34 (33%) 28 (33%)
Choice 56 (36%) 73 (17%) 10 (13%) 18 (12%) 23 (22%) 22 (26%)
Free choice only** 45 (29%) 57 (14%) 8 (11%) 16 (10%) 20 (19%) 13 (15%)

No value/value/complex 31/12/2 37/20/— 3/5/— 11/5/— 13/7/— 10/3/—

*Numbers of individual neurons with significant responses in at least one task period; some neurons showed effects in multiple
periods.
†Numbers of significant responses summed over task periods.
‡Significant reward magnitude or differential value coefficient.
§Significant save–spend choice coefficient.
{Complex indicates neurons that coded choice both with and without value in different periods; it only applies for the total neurons
column.
kNeurons tested in both free choice and imperative tasks.
**Significant choice coefficients in the free choice task but not the imperative task.
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to reward receipt (24). By contrast, activity in many choice-pre-
dictive neurons in the present study did not covary with distance
to reward (SI Results). Taken together, these observations argue
against an explanation of choice-predictive activity solely in terms
of reward expectation.
What role might neurons with choice-predictive responses serve

in the context of general amygdala function? One potential role of
the amygdala in decision-making might be to provide valuation
signals that inform decision processes in downstream brain struc-
tures. This view fits well with current theories of amygdala function
(1, 14, 20), known value coding in the amygdala in nonchoice sit-
uations (6, 11), and findings that human amygdala neurons track
values during decision-making (22). Furthermore, decision im-
pairments in humans with amygdala lesions are usually interpreted
as valuation deficits based on concomitant changes in autonomic
responses to decision outcomes (1, 2). A second possibility is that
choice-predictive responses in the amygdala reflect the output of
decision processes in other brain structures. The convergence of
information about already computed decisions with value signals in
the amygdala could be useful in learning processes (for example, by
comparing values between expected and obtained outcomes).
Conceptually similar chosen value neurons are found in the orbi-
tofrontal cortex and striatum along with other neurons that code
the value of individual choice options (30–35). However, many
amygdala neurons in the present study coded information about
upcoming choices without also coding their values. Indeed, sup-
plementary analyses showed that the majority of choice-predictive

responses could not be explained by these different forms of value
coding (SI Results, Table S2).
A third and perhaps, more tantalizing possibility is that choice-

predictive responses could reflect decision computations within the
amygdala, which might directly instruct the selection of actions. The
presently observed value-to-choice transitions could be interpreted
as initial evidence for such a local decision mechanism. Current
views of the role of the amygdala in fear conditioning also empha-
size its potential to directly guide behavior through outputs to the
striatum (17). Although this possibility could explain some of the
behavioral deficits associated with amygdala lesions (1–3), it might
seem inconsistent with evidence from reinforcer devaluation para-
digms. In these studies, amygdala inactivation does not cause defi-
cits in object choice after reward values have been updated, which is
in contrast to inactivation of the orbitofrontal cortex (36, 37).
However, the absence of behavioral deficits after inactivation does
not, per se, preclude amygdala involvement in choices. For example,
the amygdala might code choices in parallel with other brain sys-
tems, including the orbitofrontal cortex. Indeed, a recent study
showed largely parallel value coding in amygdala and orbitofrontal
cortex (10). By analogy, studies of perceptual decision-making
showed parallel choice coding throughout multiple neural systems
(38). Furthermore, reward structures, such as the amygdalae, consist
of functionally heterogeneous neuronal populations (5, 6), and the
behavioral consequences of lesions may reveal only a small part of
the information processing in such brain structures. Nevertheless,
a conclusive understanding of choice-predictive activity within the
amygdala will require additional experimental investigation.
This discussion raises the question of whether similar coding

of economic choices exists in other reward structures. The work
by Padoa-Schioppa and Assad (34) described neurons in the
orbitofrontal cortex that coded the chosen taste in an economic
decision task. Recent observations suggest that such responses
can occur early in trials before action information (39). Ac-
cordingly, chosen taste responses in the orbitofrontal cortex
could potentially reflect the output of a decision mechanism for
translating values into choices. However, it will be important to
determine whether these responses reflect genuine economic
choice coding or the expectation of specific taste rewards.
Our findings have implications for an ongoing debate about the

nature of economic choice coding in the primate brain. Evidence
for action-based coding of decision variables in the parietal cortex
and related systems (25, 40) has led to views that economic deci-
sions take place primarily among actions (40). By contrast, evi-
dence for action-independent value coding in reward structures
has led to the proposal that economic decisions take place in an
abstract space of economic goods (34, 39). Thus, a fundamental,
unresolved question is whether economic choices can exist as ac-
tion-independent neuronal representations. Recent studies in-
dicated that perceptual choice coding in parietal (41) and frontal
cortices (42) and even the superior colliculus (43) can occur in an
action-independentmanner. Here, we extended these observations
to value-based economic choices. We found choice-predictive
responses before action information in the amygdala, a reward
structure that is conceptually even farther upstream of action se-
lection. The present behavioral testing with eye movements should
not imply that the observed choice-related activity is specific for
eye movements. As the absence of relationships to saccadic re-
action times suggests, the observed activity may well occur with
economic decisions involving other effector systems. Thus, taken
together with previous evidence, our findings imply that abstract,
action-independent neuronal representations may provide the
basis for both perceptual and economic decisions.
In conclusion, our findings show that, in addition to providing

value inputs to decision-making, the amygdala also codes eco-
nomic choices in a predictive manner. Conceptually, choice
coding in the amygdala seems to occupy an intermediate stage in
neuronal information processing that is situated between valua-
tion and action selection. Existing views of the amygdala as
a pure valuation structure may, therefore, need to be extended to
incorporate a more direct role in economic decisions.
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Fig. 4. Value-to-choice transitions. Four example neurons (Left) and related
subpopulation means (Right; shaded regions indicate SEM) in which choice
coding in a given task period was preceded by value coding. Coefficients of
partial determination (CPDs) for value (green trace) and choice (blue trace)
regressors from a sliding regression quantify the percent of variance in neu-
ronal activity explained by one regressor in a multiple regression model.
Arrows indicate task periods with significant choice coding. Horizontal lines
indicate 3 SDs above the mean CPD obtained from randomly permuted data.
Value-to-choice transitions were found in 39 responses [33 neurons; (A) PreFP:
n= 6; (B) FP: n= 12; (C) Cue:n= 12; (D) Out-1: n= 9]. Value-to-choice transitions
occurred within each individual response, and exact timing varied across
responses; the population CPDs reflect the relative strength of value and choice
coding across responses without necessarily also showing these transitions.
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Methods
Animals. Two adult male rhesus monkeys (Macaca mulatta) weighing 9.2 and
12.0 kg participated in the experiment. All animal procedures conformed to
US National Institutes of Health Guidelines and were approved by the Home
Office of the United Kingdom.

Free Choice Task. In different blocks of typically 50–100 consecutive trials,
different stimuli were used as save cues to indicate different interest rates.
We tested interest rates ranging from q = 0.7 to q = 2.0. Each neuron was
typically tested with one or two different interest rates.

Imperative Control Task. A small visual cue was presented next to either the
save or the spend cue to indicate the correct choice on each trial that was
otherwise identical to a free choice trial.

Electrophysiological Recordings. We recorded the activity of single amygdala
neurons from extracellular positions during task performance using standard
electrophysiological techniques.We sampled activity from about 700 amygdala
neurons in exploratory tests with the save–spend task, resulting in a database of
329 neurons with task-related responses that we analyzed statistically.

Data Analysis. We counted impulses in each neuron relative to different task
events with fixed time windows: 1,000 ms before fixation spot (PreFP), 1,775
ms after fixation spot but before cues (FP; starting 25 ms after fixation spot
onset), 300 ms after cues (Cue; starting 20 ms after cue onset), and 500 ms
during the reward/outcome period of the preceding trial (Out-1; starting 50

ms after reward onset). We used the following multiple regression model to
assess relationships to different variables (P < 0.05) (Eq. 2):

Y = β0 + β1SS+ β2RM+ β3DV + β4LR+ β5SL+ β6RT + ε; [2]

with SS as save vs. spend choice, RM as the sum of objective reward magni-
tudes available for save and spend choices, DV as the subjective differential
value used for behavioral modeling, LR as left vs. right action, SL as spatial cue
position (save cue left vs. right), and RT as saccadic reaction time; β1–6 are
corresponding regression coefficients, β0 is the intercept, and ε is error.

Standardized regression coefficients (β values) in Figs. 1D and 3E were
defined as xi (si/sy); xi is the raw slope regression coefficient for regressor i,
and si and sy are the SDs of independent variable i and the dependent
variable, respectively (44).

Decoding Choices from Neuronal Data. We used a leave-one-out cross-vali-
dation procedure, in which every trial was decoded based on the distribution
of impulse rates from all other trials For combining data across responses, we
used z-normalized neuronal data.
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SI Methods
Electrophysiological Recording. A head holder and a recording
chamber were fixed to the skull under general anesthesia and
aseptic conditions. Before neuronal recordings, we located the
amygdala from bone marks on coronal and sagittal radiographs
taken with a guide cannula and electrode inserted at a known
coordinate in reference to the stereotaxically implanted chamber.
The anteroposterior position of the amygdala was between the
sphenoid bone (rostral) and the posterior clinoid process at and
above the dorsoventral position of the posterior clinoid (1). We
recorded activity from single amygdala neurons from extracel-
lular positions during task performance using standard electro-
physiological techniques, including online visualization and
threshold discrimination of neuronal impulses on oscilloscopes.
We recorded from one neuron at a time; this record permitted
varied exploratory tests during early experimental phases. We
aimed to record representative neuronal samples from the dor-
sal, lateral, and basal amygdala.
We sampled activity from about 700 amygdala neurons in

exploratory tests with the save–spend task. We recorded and
saved the activity of neurons that seemed to respond to at least
one task event during online inspection of several trials. This
procedure resulted in a database of 329 neurons with task-re-
lated responses that we analyzed statistically.
After completion of data collection, recording sites were

marked with small electrolytic lesions (15–20 μA × 20–60 s). The
animals received an overdose of pentobarbital sodium (90 mg/kg
i.v.) and were perfused with 4% paraformaldehyde in 0.1 M
phosphate buffer through the left ventricle of the heart. Re-
cording positions were reconstructed from 50-μm-thick stereo-
taxically oriented coronal brain sections stained with cresyl violet.
The histological reconstructions also validated the previously
radiographically assessed anatomical position of the amygdala in
agreement with earlier reports (1–3). Fig. S7 shows the cresyl
violet-stained brain sections from monkey A for the left amyg-
dala. For Fig. 3G, we collapsed recording sites from bothmonkeys
spanning 3 mm in the anterior–posterior dimension onto the
same coronal section. Because our accuracy of recording site
reconstructions was likely to be lower than 1-mm resolution, re-
cording positions with respect to individual amygdala nuclei were
approximated based on a stereotaxic atlas (4) and typical ana-
tomical landmarks.

Free Choice Task. In each trial (Fig. 1A), the monkey chose be-
tween saving the reward that was available on that trial, thereby
increasing its magnitude by a variable interest rate, and spending
the previously accumulated reward for consumption on the
present trial. A natural upper limit to the length of save choice
sequences was given by the total amount of liquid that each
monkey was able to drink on one trial. Animals initiated trials by
placing their hands on an immobile, touch-sensitive key. The
trial then started with an ocular fixation spot of 1.3° of visual
angle at the center of the computer monitor. Animals were re-
quired to keep their gaze on the fixation spot at the stimulus
center within 2–4°. At 1,500 ms plus mean of 500 ms (truncated
exponential distribution) after fixation spot onset, the two save
and spend visual stimuli of 7.0° appeared on the left and right
sides of the computer monitor (pseudorandomized). In different
blocks of typically 40–100 consecutive trials, different stimuli
were used as save cues to indicate different interest rates. Ani-
mals indicated their choice with a saccade. The chosen stimulus
was then replaced by a peripheral fixation spot of 7.0° of visual

angle. The monkey could make its choice as soon as the visual
cues appeared. After a delay period of 1,500 ms, a color change
of the peripheral fixation spot served as a go signal for the
monkey to release the touch key. The release of the touch key
was followed by the delivery of the reinforcer (an auditory or
visual cue on save trials vs. a drop of juice reward on spend
trials). Failures of key touch or fixation breaks were considered
errors and resulted in trial cancellation. More than three se-
quential errors led to a pause in behavioral testing. Accumulated
saved rewards were retained across error trials.
To provide an example of how rewards were calculated, con-

sider a series of two successive save choices by the monkey with
a base rate of reward b = 0.11 and interest rate q = 1.5. On the
second trial of the choice sequence, after the first save choice,
reward R = 0.11 × (1 + 1.5) = 0.275 mL is given. On the third
trial, after two successive save choices, reward R = 0.11 × (1 +
1.5 + 1.52) = 0.523 mL is given.
Each neuron was typically tested with one to two different in-

terest rates. The duration required for testing neurons with sta-
tistically sufficient numbers of trials in both tasks usually precluded
using more than two interest rates.
The decision task resembled tasks used to study intertemporal

decision-making, because it required choosing between immedi-
ately available rewards and future rewards of differentmagnitudes.
However, in contrast to standard intertemporal choice tasks,
temporal delays in the present task were not imposed by the ex-
perimenter but chosenby themonkeys. Thus,monkeyswere free to
produce save choice sequences of different lengths, which were
associated with different reward magnitudes depending on the
interest rate. Furthermore, longer delays invariably involvedhigher
numbers of behavioral reactions (ocular saccades).
The collection of reproducible electrophysiological data from

many individual neurons required standardized testing during
stable and reproducible behavioral performance. We trained each
animal for 3–4 mo before neuronal recordings with the different
visual stimuli and the different interest rates (300–400 trial/d, 5 d/
wk). The animals were overtrained at the time of neuronal re-
cordings and showed no behavioral signs of additional learning.

Control Task with Fixed Reward. To test whether the monkeys kept
track of the amount of reward that they had accumulated through
consecutive save choices, we offered them, on randomly inter-
spersed trials, a choice between the accumulated reward and fixed
amounts indicated by pretrained visual cues.

Rewards. A computer-controlled solenoid valve delivered juice
reward from a spout in front of the animal’s mouth (valve opening
time of 100 ms, which corresponds to 0.38 mL). For monkey A,
the base rate of reward magnitude, b from Eq. 1, was set to
0.11 mL for all sessions; for monkey B, the base rate was set to 0.11
mL for one-half of the sessions and 0.13 mL for one-half of the
sessions. The animal’s tongue interrupted an infrared light beam
below the adequately positioned spout. An optosensor monitored
licking behavior with 0.5-ms resolution (STM Sensor Technology),
and the summed durations of beam interruptions during specific
trials and task periods provided a measure of licking.

Saving Index. To examine the relationship between saving be-
havior and interest rate, we constructed a save choice index
separately for each monkey and interest rate as follows. First, we
calculated the average relative probability of observing a save
choice sequence of a specific length, where sequence lengths
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varied from zero consecutive save choices to the maximal se-
quence length observed for a monkey. (The maximal observed
sequence length was effectively the upper limit of liquid that the
animal could consume on one trial, as described in Methods.)
These probabilities were defined to sum to 1.0 across sequence
lengths within a given interest rate. Thus, these relative proba-
bilities reflect the monkey’s behavioral preference for a given
sequence of save choices relative to all other possible sequences
for a specific interest rate. Second, we weighted (multiplied)
these relative probabilities with their associated sequence lengths
(i.e., with the number of successive save choices for that se-
quence), thereby giving higher weight to probabilities that were
associated with higher sequence lengths. Third, we calculated the
mean over all weighted sequence lengths for a given interest
rate. This mean defined the saving index for a given interest rate,
and it is plotted in Fig. 1C for both monkeys and all interest
rates. Thus (Eq. S1),

SIq ¼ 1
n

Xn

i¼1

Pi;qLi; [S1]

where SIq is the saving index for a given interest rate q, n is the
maximal sequence length observed for the monkey, Pi;q is the
mean (relative) probability of observing a save choice sequence
of a specific save sequence length i, and Li is the number of
successive save choices required to obtain sequence length i.

Logistic Regression of Save–Spend Choices on Differential Values.
To analyze monkeys’ saving behavior on a trial-by-trial basis,
we used logistic regression analysis. First, we reasoned that, in
analogy to decision-making in other economic tasks, choices
would be guided by an internally computed decision variable that
is based on the subjective values that monkeys’ assigned to the
different choice options. To construct a measure of subjective
value in the save–spend task, we used the monkeys’ relative
probabilities of producing save sequences of specific lengths (as
described in the preceding paragraph) and weighted (i.e., mul-
tiplied) them by the corresponding objective reward magnitude
in milliliters that would be available from spending at that point
of a save sequence. For both monkeys and all interest rates, this
calculation produced a subjective weighting of the objective re-
ward magnitude according to monkeys’ behaviorally observed
preferences for different save sequence lengths. Thus, the sub-
jective value SV for spending at a given point i in a save sequence
for a given interest q was defined as (Eq. S2)

SVi ¼ PiMi; [S2]

where Pi is the mean (relative) probability of observing a save
choice sequence of a specific save sequence length i, and Mi is
the objective reward magnitude in milliliters of juice at that point
in the save sequence (the task description is discussed above). To
obtain unbiased estimates of these subjective values that could be
used as regressors for both behavioral choices and neural data, we
used one-half of the behavioral data in each monkey (i.e., one-half
of the experimental sessions for a given interest rate) to estimate
the subjective values, and we used the other half for subsequent
analysis. We then used these subjective values to construct a de-
cision variable to model the monkeys’ trial-by-trial choices.
The decision variable differential value plotted in Fig. 1D and

Fig. S2 was constructed in analogy to decision variables com-
monly used in studies of intertemporal decision-making. It was
defined as the difference between the subjective value for
choosing to spend on the present trial and the mean subjective
value for choosing to spend on any potential subsequent trial of
the same save sequence (where the upper limit of potential fu-
ture trials was given by the maximal observed sequence length

for the monkey). For example, if the monkey was in the fourth
trial of a save sequence (after having made three consecutive
save choices), the differential value for the present trial would be
calculated as the difference between the subjective value for
spending on the fourth trial of a save sequence and the mean of
the subjective values for spending on any of the potential next
five trials (with nine consecutive save choices being the observed
maximal number of consecutive save choices for the monkey).
Thus, the differential subjective value DV on a given trial n for
a given interest rate was calculated as (Eq. S3)

DVn ¼ SVn −
1
m

Xm

i¼nþ1

SVi; [S3]

where SVn is the subjective value of choosing to spend on trial n,
and the term in the subtrahend reflects the average subjective
value of choosing to spend on any of the potential subsequent
trials i of the same save sequence, with m defining the upper limit
of the save sequence (given by the maximal observed sequence
length for the monkey). We used logistic regression analysis to
model the monkeys’ choices based on this decision variable. The
dependent variable was a binary indicator function denoting
whether the monkey made a save or spend choice on a given trial.
The independent variable was the differential value for the corre-
sponding trial as defined above. The main purpose of this analysis
was to test whether the differential value provided an adequate
approximation of the decision variables that guided the monkeys’
choices to inform our analysis of the neuronal data. The results of
this analysis are summarized in Fig. 1D, Fig. S2, and Table S1. We
found that this differential value (i.e., a decision variable that in-
corporated the average subjective value of potential future trials in
a sequence) provided a better fit than a comparable decision vari-
able that incorporated only the subjective value of choosing to
spend on the next trial. Moreover, a differential value based on
subjective values provided a better fit compared with decision
variables based only on objective reward magnitudes or choice
probabilities.

Data Analysis. We counted neuronal impulses in each neuron on
correct trials relative to different task events with time windows
that were fixed across all neurons: 1,000 ms before fixation spot
(PreFP), 1,775 ms after fixation spot but before cues (FP; starting
25 ms after fixation spot onset), 300 ms after cues (Cue; starting
20 ms after cue onset), and 500 ms during the reward/outcome
period of the preceding trial (Out-1; starting 50 ms after reward
onset). We first identified task-related responses by comparing
activity in the FP, Cue, and Out-1 periods with a control period
(PreFP) using the Wilcoxon test (P < 0.05). Because the PreFP
period served as the control period, we did not select for task-
relatedness in this period and included all neurons with observed
impulses in the analysis. We then used the following multiple
regression model to assess relationships to trial-by-trial save–
spend choices, different measures of reward value, left–right
actions, left–right cue positions, and saccadic reaction times (P <
0.05) (Eq. S4):

Y ¼ β0 þ β1SSþ β2RM þ β3DV þ β4LRþ β5SLþ β6RT þ ε;

[S4]

with SS as the save vs. spend choice, RM as the sum of objective
reward magnitudes available for save and spend choices, DV as
the subjective differential value used for behavioral modeling,
LR as left vs. right action, SL as spatial cue position (save cue
left vs. right), and RT as saccadic reaction time; β1–6 are corre-
sponding regression coefficients, β0 is the intercept, and ε is
error. On average, intercorrelations between these regressors
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were low (Table S2). Because reward magnitudes for both save
and spend choices increased monotonically over save trials, dif-
ferent potential reward magnitude regressors (e.g., sum of re-
ward magnitudes and chosen/not chosen reward magnitude)
were highly correlated and produced similar results. The same
model was used to analyze responses in the imperative task.
Standardized regression coefficients (β values) in Figs. 1D and

3E were defined as xi (si/sy); xi is the raw slope regression co-
efficient for regressor i, and si and sy are the SDs of independent
variable i and the dependent variable, respectively (5).

Decoding of Choices from Neuronal Data. Here, we provide more
details about the decoding analysis. We used a biologically
plausible classifier to decode choices from neuronal data on a
trial-by-trial basis (6). The decoding procedure used by the
classifier was based on a nearest neighbor algorithm. The neu-
ronal activity measured in impulses per second on a single trial in
an individual neuron was used as input to the classifier. For each
individual neuron, every trial was represented in the space
spanned by the distribution of its impulse rates on save and
spend choice trials and decoded by assigning it to the class of its
nearest neighbor using the Euclidean distance (6). This type of
classification is biologically plausible in that a real downstream
neuron could perform the classification in a similar way by
comparing the input on a given trial with a stored vector of
synaptic weights (7). We used a leave-one-out cross-validation
procedure, in which every trial was decoded based on the dis-
tribution of impulse rates from all other trials. To investigate
population coding of choices, we considered neurons as simul-
taneously recorded in the sense that the trial-specific responses
of all neurons were grouped together and that decoding pro-
ceeded using the cross-validation procedure just described (6).
Classification performance was measured as the percentage of
correctly decoded individual trials, which we averaged across
responses. We repeated the analysis using linear discriminant
analysis, which also used leave-one out cross-validation proce-
dures. To produce the graphs in Fig. 3F and Fig. S5, we ran-
domly selected a given number of responses at each step and
then determined the percentage correct. For each step, this
procedure was repeated 10 times. We used a permutation test
with 1,000 iterations to define statistical significance of the
classification. Statistical significance was defined as the proba-
bility that the observed percentage correct was below a given
percentile of the probability distribution of classification results
based on randomly shuffled data.

Sliding Window Regression Analysis. We used sliding window mul-
tiple regression analysis (using the regression model described
above) with a 200-ms window, and then, we moved the window in
steps of 25 ms across each trial. Coefficients of partial determi-
nation (CPDs) (5) were defined as (Eq. S5),

CPDðXiÞ ¼ ½SSEðX‐iÞ � SSEðX‐i;XiÞ�=SSEðX‐iÞ; [S5]

with SSE(X) indicating the sum of squared errors in a regression
model that includes a set of regressors X, and X−i indicating the
set of regressors that includes all regressors except Xi. Using
methods from previous studies (5), latencies of choice and value
coding were defined as the first window in which a CPD was
3 SDs above the mean CPD obtained from a permutation test
(1,000 iterations) for three consecutive steps.

SI Results
Licking Durations. We measured anticipatory licking durations on
save and spend trials before the cues were presented (Fig. S3). In
the free choice task, significant differences in licking durations
between save and spend trials would likely indicate a difference in
reward expectation between these trials, because immediate

rewards were only delivered if the monkeys chose to spend. In-
deed, for both monkeys, licking times were significantly different
between save and spend trials in the free choice task, despite
individual differences between animals (both P < 0.001, Mann–
Whitney test). We also examined licking durations in the im-
perative control task before cue appearance on every trial. If
licking durations in the imperative task also differed between
save and spend trials, even before cue appearance, this result
might indicate that the monkeys anticipated these trial types,
similar to the free choice task. Indeed, for both monkeys, licking
times in the imperative task were significantly different between
save and spend trials (both P < 0.001, Mann–Whitney test). No
significant differences in licking patterns were found between the
free choice and imperative tasks. Fig. S3 shows this pattern of
licking durations for monkey A.

Reaction Times. We analyzed the reaction times of the saccades
with which monkeys indicated their choices on save and spend
trials. This analysis helped to test whether choice-differential
neuronal activity could be explained by task difficulty as measured
with reaction times (Fig. S3). For both monkeys, saccadic reaction
times were longer on save compared with spend trials in both the
free choice task (P < 0.001, Mann–Whitney test) and the im-
perative control task (P < 0.001, Mann–Whitney test). If choice-
differential neuronal activity reflected differences in task diffi-
culty between save and spend trials [or any secondary variable
resulting from differences in task difficulty (for example, differ-
ential attention or arousal levels) on save vs. spend trials], then
neuronal activity should differ between save and spend trials on
both the free choice task and the imperative task. By contrast, as
reported in the text, neuronal responses showed differences
between these trial types only in the free choice task and not in
the imperative task. These observations would argue against an
explanation of our effects in terms of task difficulty.

Comparison of Behavioral Models. We evaluated whether monkeys’
choices were better explained by the differential subjective value
model compared with a simpler model that only incorporated
the monkeys’ average choice probabilities for different save se-
quences. If choices were explained by a model based solely on the
monkeys’ save sequence distributions, this finding might suggest
that the animals developed a simple counting strategy and did not
incorporate trial-by-trial changes in differential subjective value.
To test this directly, we compared a logistic regression model that
incorporated only the monkey’s choice probabilities with one that
also incorporated differential value as a covariate. The models
were fit separately for different interest rates and the two animals.
Across animals and interest rates, the differential value regressor
remained significant (P < 0.002 in all cases), even if choice prob-
abilities were included as an additional regressor. The same result
was obtained if differential value was orthogonalized with respect
to choice probabilities (i.e., the shared variance between regressors
was assigned to choice probabilities) using Gram–Schmidt or-
thogonalization (8). This result suggested that the differential
value regressor explained a significant proportion of variance not
accounted for by simple choice probabilities. Indeed, a direct
comparison of standardized regression coefficients showed signif-
icantly higher coefficients for differential value compared with
choice probability across monkeys and interest rates (P = 0.001,
paired t test). To test whether the differential value model pro-
vided a better fit, even if the number of model parameters was
taken into account, we used the Akaike information criterion
(AIC) and Bayesian information criterion (BIC), which penalize
models with higher numbers of free parameters (9). AIC is defined
as −2 ln L + 2 k, in which L is the likelihood of the model, and k
is the number of model parameters. BIC is defined as−2 ln L+ k
ln N, in which N is the number of observations. Across animals
and interest rates, AIC and BIC comparisons consistently fa-
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vored the differential value model over the simpler choice
probability model. Together, these results indicate that mon-
keys’ choices were better explained by the differential value
model, and thus, they were influenced by trial-by-trial variations
in differential subjective value.

Anatomical Location of Recorded Neurons.Of all 94 choice-selective
neurons, 45 neurons were recorded in the dorsal amygdala (Fig.
3G) (including central and medial nuclei; of 168 neurons in total
recorded in this area), 3 neurons were recorded in the lateral
amygdala (of 23 recorded neurons in this area), 20 neurons were
recorded in the basomedial amygdala (of 67 recorded neurons in
this area), 16 neurons were recorded in the dorsal basolateral
amygdala (of 47 recorded neurons in this area), and 10 neurons
were recorded in the basoventral amygdala (of 24 recorded
neurons in this area). No systematic differences were found be-
tween recording sites (nonsignificant χ2 test).

Reward Expectation. To test whether choice-predictive activity
could be explained by differences in reward expectation between
save and spend trials, we tested specifically for changes in neu-
ronal activity across successive save trials. Previous studies have
shown that reward expectancy-coding neurons show activity
changes across trials to reward receipt (10). By contrast, many of
our choice-predictive responses showed no significant value co-
efficients, which modeled systematic changes over successive
save trials [85 of 127 choice-predictive responses (67%); 37 of 57
with choice-predictive activity in the free choice but not imper-
ative task (65%)]. Moreover, all of our choice-predictive re-
sponses showed a significant choice regressor, although several
measures of value were included as covariates in the multiple
regression model. This finding suggested that choice coding in
these responses cannot be explained in terms of reward value
coding or related expectancy. Furthermore, the imperative con-
trol task served to explicitly control for simple reward expectation
effects. In both tasks, reward expectation between save and spend
trials was similar, which was indicated by patterns of differences
in licking durations and saccadic reaction times (Fig. S3). By
contrast, 80% of choice-predictive responses tested in both tasks
failed to show significant choice coefficients in the imperative
task, suggesting that choice coding in these neurons is unlikely
caused by simple reward expectation.

Neuronal Coding of Value, Action, Visual Cue Features, and Reaction
Times. In addition to choice coding, we confirmed the known value
(reward magnitude and differential value) coding in the amygdala
(3, 11–14) in 225 of 846 task-related responses (27%). Further-
more, 32 of 169 task-related responses in the Cue period (19%)
were modulated by the spatial arrangement of the cues, consis-
tent with known visual feature responses in the amygdala (11).
Few neurons in the cue period showed a significant regression
coefficient for left/right eye movements (15 neurons; 9%) or
saccadic reaction times (10 neurons; 6%). In all other task pe-
riods, less than 5% of responses (our significance threshold)
were modulated by eye movement direction, spatial cue position,
or reaction time.

Control Analyses Testing for Different Forms of Value Coding. The
main analysis reported in the paper identified 127 neuronal
responses with significant choice coefficients. A subgroup of these
responses coded choice without also coding value, which was
indicated by nonsignificant coefficients for reward magnitude and
differential value (Table 1). To further examine whether signif-
icant choice coefficients might be explained by other forms of
value coding, we performed supplementary analyses. Previous
studies found that neurons in the orbitofrontal cortex and
striatum code different types of value signals (15–19), including
the value of specific choice options, irrespective of whether the

option is chosen (offer value or action value signals), the value of
the chosen option, irrespective of its identity (chosen value sig-
nals), and the value of a specific choice option if that option is
chosen (subtype of chosen value signals). We tested whether the
choice-predictive responses described in the present study can be
explained in terms of such value signals. We used the following
three supplementary regression models. In (Eq. S6)

Model S1: Y ¼ β0 þ β1SSþ β2RM þ β3SVspendþ β4SVsave

þ β5LRþ β6SLþ β7RT þ ε;

[S6]

SVspend is the subjective value of the spend choice option (irre-
spective of whether it is chosen), and SVsave is the subjective
value of the save choice option (irrespective of whether it is
chosen); all other regressors are defined as in our main regres-
sion model. This model, thus, tests for coding of offer value. In
(Eq. S7)

Model S2 : Y ¼ β0 þ β1SSþ β2RM þ β3CV þ β4UCV

þ β5LRþ β6SLþ β7RT þ ε;
[S7]

CV is the subjective value of the chosen option (regardless of
whether it is a save or spend choice), and UCV is the subjective
value of the not chosen option. This model, thus, tests for coding
of chosen value. In (Eq. S8)

Model S3 : Y ¼ β0 þ β1SSþ β2RM þ β3CVspendþ β4CVsave

þ β5LRþ β6SLþ β7RT þ ε;

[S8]

CVspend is the subjective value of the spend choice option only if
it is chosen (taking a value of zero if it is not chosen), and CVsave
is the subjective value of the save choice option only if it is
chosen (taking a value of zero if it is not chosen). This model,
thus, tests for coding of a subtype of chosen value, which com-
bines information about the chosen value with information about
the identity of the chosen option.
Model S3 is of particular interest, because coding of the chosen

value for a specificoption could appear very similar to codingof the
categorical choice. Thus, if neuronal responses showed a signifi-
cant choice regressor in this model, despite the inclusion of the
chosen value covariates, this result would support our conclusion
of choice coding beyond value. Using these additional regression
models to estimate coefficients for choice signals simultaneously
with different value signals, we found that the majority of our
choice-predictive responseswas not accounted for by value coding:
Model S1 resulted in 110 responses (84 neurons) with significant
choice coefficients (compared with 127 such responses in 94
neuronswith ourmain regressionmodel),model S2 resulted in 101
responses (77 neurons) with significant choice coefficients, and
model 3 resulted in 106 responses (88 neurons) with significant
choice coefficients. The percentages of neurons with significant
choice coefficients but nonsignificant value coefficients were
56%, 68%, and 52% for models S1–S3, respectively (compared
with 63% with our main regression model).
Thus, the majority of choice-predictive responses found in

amygdala neurons could not be explained in terms of different
types of value coding and rather, seemed to reflect the monkeys’
categorical choices. We acknowledge that some choice-predictive
responses could be interpreted as special types of value coding;
indeed, this result may be expected from our main analysis, be-
cause some of the choice-predictive responses identified with our
main regression model had both significant choice and value co-
efficients (Table 1).
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Fig. S7. Histological reconstruction of recording sites. (A) Photomicrograph of a cresyl violet-stained coronal section showing the amygdala and surrounding
structures in monkey A. The dashed box indicates the location of the region magnified in B, Upper Left. (B) Arrows mark electrolytic lesions made after recordings.
Lesions were placed to indicate typical recording sites in the amygdala (Upper) and the estimated boundaries of the amygdala (Lower). Location of individual nuclei
were approximated based on a stereotaxic atlas (1) and typical anatomical landmarks. Ab, accessory basal nucleus; ac, anterior commissure, B, basal nucleus; C, central
nucleus; Co, cortical nucleus; E, entorhinal cortex; lf, lateral fissure; La, lateral nucleus; opt, optic tract; Pu, putamen; sts: superior temporal sulcus.

Table S1. Logistic regression of save–spend choices on differential value

Regressor Monkey A (differential value) Monkey B (differential value)

β (SE) 1.65 (0.09)* 1.12 (0.14)*
N (trials) 3,859 2,939
χ2 850.42† 476.84†

−2 log likelihood 3,266.33 3,086.82
Cox and Snell R2 0.20 0.19
Nagelkerke R2 0.30 0.21
Percent correct 83.4 76.0

χ2 denotes result of omnibus test for significance of model coefficients.
*Significant at P < 1 × 10−8.
†Significant at P < 0.001.

Table S2. Correlations between regressors for the main multiple
regression model averaged across all sessions

SS RM DV LR SL RT

SS 1
RM 0.24 1
DV 0.28 0.09 1
LR −0.02 −0.02 −0.03 1
SL 0.02 −0.03 −0.03 −0.44 1
RT −0.24 −0.06 −0.1 0.11 0.02 1

DV, differential subjective value; LR, left–right action choice; SL, save cue
left–right position; RM, reward magnitude; RT, saccadic reaction time; SS,
save–spend choice.
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