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Risk Prediction Error Coding in Orbitofrontal Neurons

Martin O’Neill and Wolfram Schultz
Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge CB2 3DY, United Kingdom

Risk is a ubiquitous feature of life. It plays an important role in economic decisions by affecting subjective reward value. Informed
decisions require accurate risk information for each choice option. However, risk is often not constant but changes dynamically in the
environment. Therefore, risk information should be updated to the current risk level. Potential mechanisms involve error-driven updat-
ing, whereby differences between current and predicted risk levels (risk prediction errors) are used to obtain currently accurate risk
predictions. As a major reward structure, the orbitofrontal cortex is involved in coding key reward parameters such as reward value and
risk. In this study, monkeys viewed different visual stimuli indicating specific levels of risk that deviated from the overall risk predicted
by a common earlier stimulus. A group of orbitofrontal neurons displayed a risk signal that tracked the discrepancy between current and
predicted risk. Such neuronal signals may be involved in the updating of risk information.

Introduction
Very few things in life are certain. Most of our decisions involve some
degree of uncertainty. Even if we know the values of desired objects,
we often don’t know for sure whether we will obtain them. Our
decisions benefit greatly from knowing how certain these objects are.
To make reasonable decisions, we appreciate two vital pieces of in-
formation, namely the value of each desired object and the uncer-
tainty of obtaining it. More formally, the two main parameters
influencing our decisions are the first two statistical moments of
reward probability distributions, namely the expected value (antici-
pated mean) and the variance. The variance and its square root,
standard deviation (SD), are commonly referred to as risk. Impor-
tantly, these parameters are not constants but vary dynamically in
the environment. Therefore, it is important to update our knowl-
edge to the currently valid levels of expected value and risk.

Error-driven mechanisms provide common methods for up-
dating knowledge about important decision variables. For exam-
ple, reward prediction errors, which capture the discrepancy
between current and predicted reward values, are thought to crit-
ically serve the learning about future reward values (Rescorla and
Wagner, 1972; Sutton and Barto, 1981). A similar mechanism
may function to update the learning of the risk. Specifically, a risk
prediction error that captures the discrepancy between current
and predicted risk may be involved in updating our knowledge
about risk (Preuschoff et al., 2008).

Reward value and risk are encoded by neurons in the orbito-
frontal cortex (Thorpe et al., 1983; Tremblay and Schultz, 1999;

Hikosaka and Watanabe, 2000; Wallis and Miller, 2003; Roesch
and Olson, 2004; Padoa-Schioppa and Assad, 2006; Kepecs et al.,
2008; Kennerley et al., 2009, 2011; O’Neill and Schultz, 2010).
Moreover, human imaging studies suggest coding of reward
value prediction errors in orbitofrontal cortex (O’Doherty et al.,
2003; Dreher et al., 2006). These data suggest the presence of
error-driven mechanisms in the orbitofrontal cortex. Given the
involvement of orbitofrontal cortex in risk processing and the
possibility of error-driven mechanisms, we investigated whether
single neurons in the orbitofrontal cortex code risk prediction
errors. In a simple task, monkeys viewed visual cues that indi-
cated transitions in risk. We identified a population of orbito-
frontal neurons that tracked the discrepancies between current
and predicted risk, thus displaying a neurophysiological risk pre-
diction error signal.

Materials and Methods
Subjects. We used two adult male rhesus monkeys (Macaca mulatta),
weighing 10 –14 kg. The monkeys were implanted, under general anes-
thesia, with a head holder and a stainless steel chamber on the skull to
enable daily electrophysiological recordings from single neurons. All sur-
gical and experimental procedures were performed under a Home Office
License according to the United Kingdom Animals (Scientific Proce-
dures) Act 1986.

Behavioral task. During training and testing, the monkeys were on a
restricted water schedule 6 d of the week and 24 h water ad libitum. The
monkeys were trained to sit in a restraining chair in front of a computer
monitor with the head fixed and to perform a memory-guided saccade
task. An aperture in the front of the chair provided access to a touch-
sensitive key. To commence a trial, the monkey fixated on a red spot in
the center of the monitor and contacted the key. After 1.5 s, a visual cue
appeared in pseudorandom alternation to either the left or right of the
fixation spot for 0.5 s (Fig. 1A). The animal maintained fixation for an
additional 2 s before the center spot was extinguished, which was the
signal for the monkey to saccade to the left or right cue location. A
successful saccade led to the appearance of a red fixation spot at the
peripheral location. After fixation for 1 s, the spot turned green, and the
animal released the key. Juice reward was delivered 1 s later. The next trial
started with the appearance of the central fixation spot at 3.5 s after the
reward. Thus, the intertrial interval was 3.5 s, and the total cycle time
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(trial duration plus intertrial interval) was 10.5 s. For neuronal record-
ings, only one cue was shown per trial. We assessed the monkey’s risk
preferences in a subset of behavioral sessions in which the animal chose
between two cues (one safe and one risky).

Stimuli and independent variables. As risk cues, we used black bars on
framed, rectangular white backgrounds. The vertical position of the bar
indicated juice volume. Two bars within the rectangle indicated that one
of two possible juice volumes would be delivered with equal probability
( p � 0.5 each), thus explicitly indicating the risk of the outcomes (Fig.
1B). We used three pseudorandomly alternating gambles whose reward
volumes were 0.27 and 0.33 ml for gamble 1, 0.24 and 0.36 ml for gamble
2, and 0.18 and 0.42 ml for gamble 3, resulting in the same mathematical
expected value (EV; Eq. 1) of 0.3 ml for each gamble (and thus a common
EV of 0.3 ml). Only one reward volume was delivered at trial end. The
gambles had three different levels of risk (Fig. 1B). We defined risk as SD
of a probability distribution with the following:

EV � �
i�1

n

�pi � xi�, (1)

SD � ��
i�1

n

pi � �xi � EV)2, (2)

where n is the number of possible juice volumes (two volumes for current
risk at each cue, six volumes for overall risk at the fixation spot).

Using Equation 2, the current risk is defined as the SD of each risk cue,
and the predicted risk is defined as the SD of all possible reward outcomes
(Fig. 1 B, C). We defined risk prediction error as the current risk minus
the predicted risk (Eq. 3). Thus, the risk prediction error (RiPE) was
calculated as the SD indicated by each risk cue minus the predicted SD
indicated by the preceding fixation spot:

RiPE � Current SDRisk cue � Predicted SDFixation spot. (3)

This measure provided three different levels of signed RiPE, as indi-
cated by the red arrows above and below the maroon horizontal dashed
line in Figure 1B. The signed RiPEs were correlated with risk because the
overall risk prediction, which is subtracted from current risk, was con-
stant for all three gambles. Therefore, we considered unsigned, absolute

RiPEs, which were 0.05, 0.02, and 0.04 ml for the low-, medium-, and
high-risk cues, respectively (Fig. 1B,C).

The red fixation spot at trial onset was identical in all trial types and
predicted that one of the three possible risk cues would follow. Therefore,
the global, predicted risk at the time of the fixation spot was identical in
all trials (Fig. 1B, maroon arrow; Eq. 2). The subsequent appearance of
the explicit risk cue indicated the specific risk in the current trial (Fig. 1B,
blue arrows; Eq. 2). In addition to the explicit risk information, with each
risk cue there was a transition from the global, predicted risk at the time
of the fixation spot to the specific risk signaled by the explicit risk cue in
the current trial (Fig. 1B, red arrows; Eq. 3). Therefore, appearance of a
specific cue indicated the risk per se in any given trial and also elicited a
RiPE between the risk indicated by that cue and the global risk predicted
by the fixation spot. Note that the expected value was constant for all
cues. A reward value prediction error is calculated as the difference in
reward value from expected value and is thus zero at the time of cue
presentation.

However, monkeys displayed subjective preferences for risk, as de-
scribed before (McCoy and Platt, 2005; O’Neill and Schultz, 2010). Thus,
although all outcomes had the same expected objective value, their sub-
jective values varied with risk level. Hence, there was a subjective value
prediction error at the time of cue presentation. To assess the subjective
values derived from the influence of risk on value, we investigated behav-
ioral choices between a safe cue and each of the risky cues. The safe cue
consisted of a single bar that indicated a safe juice volume equal to the
expected value of the risky cues ( p � 1.0). The identical expected objec-
tive values of juice volumes of the safe and the risky cues allowed us to
assess the subjective value derived from risk sensitivity without con-
founding differences in expected objective value. We used two-way
ANOVA to assess the monkeys’ preferences in choices between safe and
risky cues (percentage of choice of the risky over the safe option), with
level of risk and monkey as factors. The percentage preference for each of
the risky cues compared with the safe cue was taken as a numerical
measure of subjective value. Thus, the subjective value prediction error
(SVPE) was calculated as the subjective value (SV) of each risk cue minus
the predicted subjective value indicated by the preceding fixation spot:

SVPE � Current SVRisk cue � Predicted SVFixation spot. (4)

The predicted SV at the fixation spot was the numerical average of the
subjective values of the three risk cues as assessed by the respective be-

Figure 1. Risk prediction error. A, B, Task design. An initial ocular fixation spot predicts the overall risk, derived from the overall reward probability distribution (maroon arrow in B). The
subsequent appearance of one of the risk cues defines the current risk for each trial. Each risk cue predicts an equiprobable ( p�0.5 each), high or low amount of liquid reward delivered after saccadic
eye movement to the cue location. Thus, each risk cue indicates current risk (defined as standard deviation of each specific reward probability distribution) (blue arrows in B). The risk prediction error
on any given trial is the specific risk indicated by the risk cue for the current trial minus the predicted, overall risk indicated by the fixation spot common for all trials (red arrows in B). C, Actual
measures used. D, Behavioral responses. As risk increased, both monkeys showed an increasing preference for the risky cues compared with the safe cue (which had an outcome that equaled the
expected value of the risky cues). Thus, the monkeys showed risk preference. Data points show mean percentage preference. Error bars show SEM.
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havioral preferences. The current SV was derived from the numerical
preference measure (percentage) for each risk cue. Because we were in-
terested in comparing the neuronal responses to the unsigned, absolute
RiPEs, we considered the absolute SVPEs, which were 10, 0, and 18% for
the low-, medium-, and high-risk cues, respectively.

Neuronal recording and data analysis. We isolated and recorded the
activity of single neurons in the orbitofrontal cortex while monkeys per-
formed the task, according to procedures described previously (O’Neill
and Schultz, 2010). In the first step of analysis, we defined the presence of
cue-related neuronal responses by the Wilcoxon test, which compared
neuronal activity during a period of 0.1– 0.6 s following cue onset against
a control period of 1.0 s before the fixation spot. In the second step, we
performed a multiple linear regression analysis on the cue responses
identified by the Wilcoxon test.

The cues indicated both the RiPE and the risk per se on each trial.
Therefore, both these terms were included in a multiple regression model
used to assess the relationship of the cue responses to each of these
variables:

Y � �0 � �1 �RiPE� � �2 Risk � e, (5)

where Y is the neuronal firing rate; �RiPE� is the unsigned, absolute risk
prediction error; �1 and �2 are corresponding regression coefficients; �0

is the intercept; and e is error. Note that because of the risk-seeking
attitude of our animals (Fig. 1D), risk covaried with subjective value,
neither of which were of primary interest for this study. However, the
prediction errors in these variables might correlate. Therefore, we disam-
biguated RiPE from SVPE as described below (Eqs. 7, 8).

To confirm the capacity of RiPE for explaining variance of neuronal
activity in addition to that accounted for by the risk regressor of Equation
5, we used a hierarchical approach in which we compared the full regres-
sion model against a reduced model with the F test (Snedecor and Coch-
ran, 1989). Thus, we compared Equation 5 with the reduced model:

Y � �0 � �1 Risk � e. (6)

For comparisons between different regressors, we normalized their
slopes (�) and calculated the standardized regression coefficient (SRC)
for the ith regressor xi as ai � si/sy, with ai as the original slope regression
coefficient (�) and si and sy as the SDs of xi and the dependent variable y.
To quantify the extent to which the regressors accounted for the variance
of the neuronal data, we used the coefficient of partial determination
(CPD).

To assess the potential influence of SVPE, we performed separate sin-
gle linear regressions using SVPE and RiPE as regressors, as adding SVPE
to Equation 5 would exceed the number of trial types allowed in the
configuration of our multiple regression model.

Y � �0 � �1 �RiPE� � e. (7)

Y � �0 � �1 �SVPE� � e, (8)

where �SVPE� indicates the unsigned, absolute SVPE. Comparisons of the
r 2 between these two regressions served to assess whether the �RiPE�
captured more of the variance in the data than the �SVPE�.

Results
We recorded the extracellular activity of 242 single neurons in the
orbitofrontal cortex during task performance. Of these, 180 neu-
rons (74%) responded significantly to the cues (p � 0.05, Wil-
coxon test).

The multiple regression analysis (Eq. 5) revealed that the cue
responses of 33 of 180 neurons (18%) coded the unsigned, abso-
lute RiPE (all p � 0.05), with 15 of 33 showing significant positive
and 18 of 33 showing significant negative correlation coefficients
(Fig. 2A–C, left and right, respectively). The hierarchical regres-
sion analysis revealed that RiPE explained additional variance
after risk was taken into account in 30 of the 33 neurons identified
by Equation 5 (p � 0.05; F test on Eq. 5 vs Eq. 6; remaining three
neurons, p � 0.06). The standardized regression coefficients were

Figure 2. Orbitofrontal neurons code risk prediction error. A, Single neuron examples. Smoothed
histogramsshowresponsesfromtwoexampleneuronscodingriskpredictionerrorwithpositiveslope
(left) and negative slope (right). B, Population responses. Smoothed histograms show averaged pop-
ulation responses from all neurons coding risk prediction error with positive slopes (left) and negative
slopes (right). Gray bars indicate the time windows for analysis. C, Regressions on risk prediction error.
Data points show mean firing rates averaged from all neurons during the shaded periods in B. Error
bars show SEM. D, SRCs from linear regressions on neurons with significant positive betas (left) and
negative betas (right) for RiPE at cue presentation. E, Scatterplot of CPDs for neurons with significant
correlation coefficients for risk prediction error (red dots), risk (blue dots), and both (green dots) at cue
presentation (left). R 2 values from single linear regressions with risk prediction error and subjective
value prediction errors as regressors (right).
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significantly higher for RiPE than for risk in the 15 neurons with
positive coefficients (Fig. 2D, left; F(1,28) � 5.31, p � 0.03, one-
way ANOVA) and lower in the 18 neurons with negative coeffi-
cients (Fig. 2D, right; F(1,34) � 48.36, p � 0.001, one-way
ANOVA).

Of the 180 neurons with cue responses, 23 coded only RiPE, 42
coded only risk per se, and 10 coded both RiPE and risk (p �
0.05). A � 2 test failed to detect a significant difference between the
likelihood of a RiPE-coding neuron to code risk compared with
any task-related neuron coding risk (� 2 � 0.127, p � 0.721),
suggesting that risk coding did not occur preferentially in RiPE-
coding neurons. In addition, the amount of variance explained
was not correlated between RiPE and risk (Fig. 2E, left). Thus,
RiPE coding was mostly distinct from risk coding.

To control for subjective value prediction error (SVPE) cod-
ing, we derived a measure of subjective value for the three risky
cues from the monkeys’ behavioral preferences (Fig. 1D). The
monkeys preferred the risky option more as the risk increased
(main effect of risk: F(2,51) � 28.02, p � 0.001, two-way ANOVA),
and this effect was not statistically different between the two
monkeys (main effect of monkey; F(1,51) � 2.87, p � 0.1, n.s.;
risk � monkey interaction: F(2,51) � 0.2, n.s.). Therefore, we
averaged the monkeys’ preference ratings (Fig. 1D, black trian-
gles) to calculate the SVPE (Eq. 4). The variance in the neuronal
data was better accounted for by a RiPE than an SVPE in the
regressions (Fig. 2E, right; p � 0.02, Wilcoxon signed-rank test
between r 2 derived from Eqs. 7 and 8). Thus RiPE coding was not
explained by SVPE coding in this neuronal population.

As an additional test on the suitability of a linear regression
analysis on our data of neuronal firing rates, we log transformed
the data from all neurons and re-ran the full analysis. This re-
sulted in 31 of 180 neurons (17%) with significant regression
coefficients for RiPE at cue presentation, comparable with the
results from the analysis on the raw data.

The distribution of the 33 orbitofrontal neurons with cue-
related RiPE responses was not significantly different between
orbitofrontal areas 11 (14 of 83 neurons), 12 (2 of 5 neurons), 13
(15 of 88 neurons), and 14 (2 of 4 neurons) (� 2 � 4.5, p � 0.216,
� 2 test).

Discussion
This study investigated the neurophysiological coding of RiPEs,
as defined by the difference between the predicted risk and the
current risk. A group of orbitofrontal neurons coded the un-
signed, absolute RiPE with a positive or negative slope. This error
coding was mostly distinct from risk coding per se and subjective
value coding.

Prediction error is a general term that can be derived from any
predictable variable. It is defined as the difference between the
current measure and the predicted measure. For example, reward
value prediction error is defined as current reward value minus
predicted reward value and constitutes a crucial component in
reinforcement learning (Rescorla and Wagner, 1972). In analogy,
RiPE is defined as current risk minus predicted risk, as used here
and in previous studies (Preuschoff et al., 2008; d’Acremont et al.,
2009). This definition allows calculation of RiPE at the cue and
the outcome, as both events are preceded by well defined levels
of risk prediction. This definition follows that of previous
studies that also used binary gambles (Preuschoff et al., 2008;
d’Acremont et al., 2009). The previous studies derived risk from
value prediction error, whereas we calculated the SD directly.
Although the calculations for deriving risk differ between the
previous studies and ours, in binary gambles these two measures

are numerically identical (Preuschoff et al., 2008, their Table S1).
Therefore, with either approach, the difference between the cur-
rent and the predicted risk, the RiPE, is equivalent. In our exper-
iment, RiPEs calculated in this way amount to zero at reward
outcome. Therefore, we were only able to test for RiPEs at cue
presentation.

Investigations of neuronal risk processing have revealed the
involvement of several brain structures. Studies defining risk as
statistical variance or SD have identified risk processing in frontal
cortex, parietal cortex, cingulate cortex, striatum, amygdala, and
insula (Sanfey et al., 2003; Hsu et al., 2005; McCoy and Platt,
2005; Huettel et al., 2006; Kepecs et al., 2008; Preuschoff et al.,
2008; Christopoulos et al., 2009; Tobler et al., 2009; O’Neill and
Schultz, 2010). In addition, activity in the human insula corre-
lates with RiPEs (Preuschoff et al., 2008; d’Acremont et al., 2009).
Together with our findings, the orbitofrontal cortex and the in-
sula seem to be involved in processing both risk per se and devi-
ations from predicted risk. In addition, the orbitofrontal cortex is
involved in encoding deviations from expected reward value
(value prediction errors; O’Doherty et al., 2003; Dreher et al.,
2006). These findings suggest an important role of orbitofrontal
cortex in updating the key variables of reward probability distri-
butions, namely expected value and risk.

Prediction errors can be signed or unsigned. Signed predic-
tion errors are positive for greater-than-predicted outcomes and
negative for less-than-predicted outcomes. In reinforcement
learning about reward value, signed prediction errors serve for
updating the value function. In contrast, unsigned, absolute
value prediction errors serve for adjusting the value learning co-
efficient in the associability learning rules (Mackintosh, 1975;
Pearce and Hall, 1980). These distinct roles are a direct conse-
quence of the prediction errors being signed or unsigned; signed
value prediction errors signal that values are less than or greater
than predicted, whereas unsigned prediction errors simply track
the difference from prediction regardless of whether it is greater
than or less than predicted. Similar roles may hold for risk; signed
RiPEs could be involved in the main process of risk updating
(Preuschoff et al., 2008; d’Acremont et al., 2009). In contrast, the
currently reported unsigned RiPE signal in orbitofrontal neurons
could serve to set the coefficient of error-driven risk learning to
adjust or modulate the main process of updating risk informa-
tion, analogous to unsigned value prediction errors. Thus, an
organism conceivably would learn most efficiently and flexibly
about risks by using different forms of RiPE signals. These signals
may be coded within the same brain area or in different areas,
such as the insular (Preuschoff et al., 2008; d’Acremont et al.,
2009) and orbitofrontal cortex.
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