Dopamine prediction error responses integrate subjective value from different reward dimensions

Armin Lak1,2, William R. Stauffer1, and Wolfram Schultz

Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge CB2 3DY, United Kingdom

Edited by Michael E. Goldberg, Columbia University College of Physicians and Surgeons, New York, NY, and approved December 24, 2013 (received for review November 20, 2013)

Prediction error signals enable us to learn through experience. These experiences include economic choices between different rewards that vary along multiple dimensions. Therefore, an ideal way to reinforce economic choice is to encode a prediction error that reflects the subjective value integrated across these reward dimensions. Previous studies demonstrated that dopamine prediction error responses reflect the value of singular reward attributes that include magnitude, probability, and delay. Obviously, preferences between rewards that vary along one dimension are completely determined by the manipulated variable. However, it is unknown whether dopamine prediction error responses reflect the subjective value integrated from different reward dimensions. Here, we measured the preferences between rewards that varied along multiple dimensions, and as such could not be ranked according to objective metrics. Monkeys chose between rewards that differed in amount, risk, and type. Because their choices were complete and transitive, the monkeys chose “as if” they integrated different rewards and attributes into a common scale of value. The prediction error responses of single dopamine neurons reflected the integrated subjective value inferred from the choices, rather than the singular reward attributes. Specifically, amount, risk, and reward type modulated dopamine responses exactly to the extent that they influenced economic choices, even when rewards were vastly different, such as liquid and food. This prediction error response could provide a direct updating signal for economic values.

Prediction errors represent the difference between predicted and realized outcomes. As such they are an ideal way to learn through everyday experiences (1). These experiences include making value-based (economic) choices between different rewards and evaluating the outcome of such decisions. Some of the most common economic decisions we face are between rewards that lack a common quality for comparison. To facilitate consistent choices between them, such rewards should be evaluated on a common scale of value (2–4). Thus, an ideal way to facilitate and reinforce economic decisions is to encode the prediction error directly in terms of subjective value. Midbrain dopamine neurons encode a reward prediction error (5–7) that is sufficient to cause learning (8, 9). These neurons receive inputs from several brain areas that encode subjective value and project axons to every brain structure implicated in economic choice (10–21). Therefore, dopamine neurons are ideally positioned to broadcast a teaching signal that directly updates economic values.

Economic preferences between alternatives that vary in one attribute are easily determined by the magnitude of the attribute (22). For instance, larger rewards are preferred over smaller ones, high reward probability is preferred over low reward probability, and reward delivered after a short delay is preferred over the same reward delivered after a long delay. Subjective preferences can only be isolated from the underlying reward attributes for rewards that vary in more than one dimension. Although previous studies showed that dopamine responses reflected magnitude, probability, and delay (23–25), it remained unclear how dopamine responses would reflect individuals’ subjective preferences among rewards that vary along multiple dimensions. These rewards cannot be ordered according to objective metrics; rather, the subjective rankings of such rewards can only be inferred by observing an individual’s choices (26). If those choices are complete and transitive, then the individual behaved as if she was maximizing subjective value (26). Completeness demonstrates that the individual had preferences (or was indifferent) between all of the rewards, whereas the transitive property provides strong evidence that different reward attributes were integrated onto a common scale, and that choices were made by selecting the highest rank on that scale (27). Therefore, the activity of neurons that encode subjective value should reflect the transitive ordering of rewards that vary in more than one attribute.

Here, we varied the amount, risk, and type of rewards and used different behavioral economic paradigms to infer the subjective value of these rewards from monkeys’ choices. These tests provided a means to quantify the influence of singular reward attributes on a common value scale. In close correspondence to the behaviorally defined reward value, the dopamine prediction error response reflected the integrated subjective value derived from different rewards rather than distinguishing between their attributes.

Results

Behavioral Measurement of Value. We measured subjective value by observing the choices two monkeys made between different reward predicting cues (Fig. 1A, Fig. SLA, and Methods). Each cue predicted black currant juice (juice 1), strawberry juice (juice 2; orange juice for monkey B), or an equiprobable (P = 0.5 each) gamble between juices 1 and 2 (Fig. 1B). Moreover, each cue predicted either a certain amount of juice (0.45 mL) or an equiprobable gamble between a small and large amount (0.3 or 1.5 mL).

Significance

Most real-world rewards have multiple dimensions, such as amount, risk, and type. Here we show that within a bounded set of such multidimensional rewards monkeys’ choice behavior fulfilled several core tenets of rational choice theory; namely, their choices were stochastically complete and transitive. As such, in selecting between rewards, the monkeys behaved as if they maximized value on a common scale. Dopamine neurons encoded prediction errors that reflected that scale. A particular reward dimension influenced dopamine activity only to the extent that it influenced choice. Thus, vastly different reward types such as juice and food activated dopamine neurons in accordance with subjective value derived from the different rewards. This neuronal signal could serve to update value signals for economic choice.

Author contributions: A.L., W.R.S., and W.S. designed research; A.L. and W.R.S. performed research; A.L. and W.R.S. analyzed data; and A.L., W.R.S., and W.S. wrote the paper. The authors declare no conflict of interest.

This article is a PNAS Direct Submission.

Freely available online through the PNAS open access option.

1A.L. and W.R.S. contributed equally to this work.

2To whom correspondence should be addressed. E-mail: arminlk@gmail.com.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1321596111/-/DCSupplemental.

www.pnas.org/cgi/doi/10.1073/pnas.1321596111
To infer economic value from choice probability, the choices must be complete and transitive (26-28). We had imposed nominal completeness by offering the animals choices between all pairs of cues. To measure actual completeness for all pairs of options a and b, we tested how close the choice behavior approached the ideal choice behavior defined by $P(a | b) + P(b | a) = 1$, where $P(a | b)$ indicates the probability of choosing option a over b (28).

We found that the animals' average error rates in making a successful choice for a given pair of cues was 1% for all pairs. Importantly, none of the error rates was statistically different from the others ($P > 0.05$, ANOVA). Thus, both animals expressed well-defined preferences between all possible pairs of cues. Next, we quantified the transitivity of their choices. Stochastic transitivity comes in two strengths: weak and strong (SI Methods), and both strive to establish consistency among different binary choices (26).

Thus, for options a, b, and c, if the individual probabilistically selects a over b, and b over c, she should then probabilistically select a over c. If $P(a | c)$ is greater than 50%, then the choices satisfy weak stochastic transitivity (Fig. 1D, Left). When $P(a | c)$ is greater than or equal to the maximum of $P(a | b)$ and $P(b | c)$, then the choices satisfy both the weak and the strong axioms (Fig. 1D, Right). The choices of both monkeys satisfied the weak axiom of stochastic transitivity in all 20 three-cue combinations ordered according to the animals' probabilistic choices (cue a over b, and cue b over c), and the strong axiom in 15 of 20 and 14 of 20 combinations, respectively (Table S1). Satisfying completeness and transitivity established that the animals' choices were consistent with an ordinal ranking of the cues explained by a monotonic, weakly increasing value function.

Monkey A preferred juice 1 over juice 2 and was risk-neutral. Monkey B preferred juice 1 over juice 2 but also preferred risky over safe options. Both animals associated the six cues with three levels of subjective value, although with different ordering in each animal. As such, although they preferred some of the cues to others, they showed choice indifference among some pairs of cues (Fig. 1E, P-values showing strong transitivity in 1 of 20 combinations). Because any monotonically increasing utility function would be consistent with the measured value rankings, these tests did not reveal numerical values. However, a numerical scale is vital to quantify the influences of individual reward properties on common scale value and provides a measure for analyzing neural data. To obtain such a scale, we used a psychometric choice method, parameter estimation by sequential testing (PEST) (29, 30). We used black currant juice as a common reference and measured the amount of this juice that was subjectively equivalent to the value of each cue (Fig. 1G, Fig. S2 A and B, and Methods).

Therefore, milliliters of black currant juice at choice indifference provided a numerical estimate of value for each cue (Fig. 1H and Fig. S2 C and D). The choice probabilities from the binary choices reflected the values acquired psychometrically, suggesting that the two methods for measuring economic value were broadly consistent (Fig. 1I). The larger the difference was between the measured values, the greater was the probability of choosing the higher-valued option ($\rho = 0.90$, $P = 0.01$ and $\rho = 0.93$, $P = 0.007$ in monkeys A and B, respectively, Pearson's
correlation). These converging behavioral results allowed us to define the value of the reward-predicting cues on a common scale and in a convenient currency (milliliters of black currant juice).

Cue Responses. To unambiguously relate the neuronal responses to the value of specific rewards, we recorded from single dopamine neurons in a task in which the reward-predicting cues were displayed individually. Of 80 dopamine neurons tested with different risks and juice types, 77 responded to unpredicted reward displayed individually. Of 80 dopamine neurons tested with different risks and juice types, 77 responded to unpredicted reward displayed individually. Each trial started with a central fixation point (FP), to which the animal shifted its gaze. Subsequently, one of the six cues appeared in the center of the monitor for 1.5 s and extinguished upon reward delivery (Fig. 2A and SI Methods). Because the intertrial interval (ITI) duration was random and the animals could not predict trial onset, the reward prediction during the ITI was close to zero, whereas the value at the FP was the average value of all trial types. Thus, the prediction error at the FP was the constant difference between the average value of all trial types and the prediction of zero. When one of the cues appeared, the prediction shifted from the average value at the FP to the specific value at the cue.

Dopamine neurons displayed identical phasic activations at FP onset in all trial types that reflected the uniform prediction error at the FP (Fig. 2B and Fig. S5, P > 0.2, one-way ANOVA across trial types in both monkeys; see SI Results for saccadic response times to FP). Onset of the cue coincided with a robust dopamine response that reflected the value predicted by the cue. Cues with the lowest values elicited substantial neuronal depressions (Fig. 2C, Left), whereas cues with highest values induced pronounced activations (Fig. 2C, Right). Importantly, cues with similar values elicited indistinguishable neuronal responses, despite predicting rewards with different attributes (Fig. 2C and Fig. S6A). This pattern of neuronal activity was clearly visible at the population level (Fig. 2D and Fig. S6D). The dopamine neurons did not encode the objective properties of the upcoming reward (Fig. 2D, Inset and Fig. S6B). These observations suggested a close relationship between the neuronal encoding and the behavioral manifestation of subjective value.

We quantified the prediction error using the numerical estimation of the economic value in milliliters of black currant juice (Fig. 1F). For example, the size of the prediction error with the most preferred cue was 0.14 mL of black-currant juice (0.56 mL – 0.45 mL, Fig. 2A). The neuronal responses to cues were highly correlated with the numerical values (Fig. 2E). Cues eliciting a negative prediction error in value resulted in graded depressions, whereas cues eliciting a positive prediction error induced graded activations in dopamine neurons. This positive relationship with the prediction error in economic value was significant in two thirds of single neurons (Fig. 2F; P < 0.05, linear regression) and in the population of all sampled neurons in both animals (Fig. 2G; R² = 0.27 and 0.28, respectively, P < 0.0001). Other factors that might influence the activity of dopamine neurons include reinforcement history (7, 31) and motivational decline owing to satiety effects (32). However, the neuronal recordings took place after the animals were highly trained in a stable environment, and thus learning should be minimal. Accordingly, cues and rewards presented in the previous trials had negligible effects on the neuronal responses (Fig. S7 A-D and SI Results). Moreover, rewards accumulated over a session had only a small effect on the neuronal responses to FP in monkey B (Fig. S7E, P = 0.001 and P = 0.008 for behavior and neurons, respectively, linear regression). Thus, the neuronal prediction error responses to the cues reflected the subjective value of the predicted reward.

In four trial types, juice type and risk varied orthogonally. We used receiver operating characteristics (ROC) analysis to quantify...
the effect of these attributes on both the subjective values and the neuronal response to cues (SI Methods). In monkey A, this analysis revealed good discrimination between the distributions of values arising from the different juices but largely overlapping value distributions arising from different risk levels (Fig. 3A, Left; \(P < 0.0001 \) and \(P > 0.3 \) for juice type and risk, respectively, bootstrap test). Correspondingly, the neuronal responses in this animal were largely sensitive to juice type but not risk (Fig. 3A, Right; \(P < 0.0001 \) and \(P > 0.5 \) for juice type and risk, respectively, bootstrap test). In monkey B, the behavioral sensitivity to both juice type and risk was paralleled by the neuronal sensitivity to these two attributes (Fig. 3B, Left; behavior; \(P < 0.0001 \) and \(P < 0.008 \); Fig. 3B, Right; neurons; \(P < 0.0001 \) and \(P < 0.0001 \) for juice type and risk, respectively, bootstrap test). ROC analysis of individual neuronal responses revealed that 63% of all tested neurons reflected the behavioral sensitivity to different reward attributes in a subject-specific manner (Fig. 3C). This result mirrors the 66% of neurons whose activity was significant in single linear regressions on subjective value (Fig. 2F). Because monkey A was risk-neutral in the tested gambles, we could not conclude whether the dopamine responses integrated the preference for risk. Therefore, we measured risk preference in a different gamble with higher expected value and higher risk (equiprobable gamble between 0.1 and 1.2 mL). The subjective value of the gamble was significantly larger than the subjective value of a safe reward with equal expected value (\(P < 0.0001 \), Wilcoxon signed-rank test).

Accordingly, the cue responses in a subset of five dopamine neurons were larger for the gamble than for the safe reward and thus reflected the higher subjective value of risky compared with safe rewards observed in behavioral tests (Fig. S8, \(P = 0.0002 \), Wilcoxon rank-sum test across trials). Together, these findings indicate that singular reward attributes modulated dopamine responses exactly to the extent that they influenced economic choices. Thus, the majority of dopamine neurons encode subjective value by integrating the behavioral weight of different reward attributes into a common scale of value.

To investigate whether results presented so far extend beyond liquid rewards, in a separate set of experiments we measured preferences between food and juice rewards of varying magnitude (SI Methods) and then recorded the responses from 20 additional dopamine neurons to cues that predicted these rewards. Binary choices among cues were stochastically transitive (in all possible cue combinations) and revealed that the tested food rewards were preferred to small juice rewards, but less preferred than large juice rewards (Fig. 4A, \(P < 0.01 \), binomial test). Psychometric estimation of the numerical subjective values correlated well with the binary choices (\(p = 0.99, P < 0.0001 \), Pearson’s correlation). Dopamine responses scaled with these subjective values, independent of the identity or physical properties of these rewards, and demonstrated a highly significant positive relationship with prediction error in economic value in both single neurons (Fig. 4B, 15 of 20 neurons, \(P < 0.05 \), linear regression) and the population (Fig. 4C, \(R^2 = 0.45, P < 0.0001 \), linear regression). Thus, the dopamine responses reflected the common scale value of rewards with very different physical properties.

Reward Responses. We next investigated whether the dopamine responses to rewards reflected the preferences the animal has over different rewards. We tested this hypothesis by varying type and amount of the juice rewards, both together and separately. When there was an equiprobable gamble between amounts (0.3 or 0.6 mL) but juice type was fully predicted, the prediction error derived only from juice amount. Dopamine neurons showed the typical positive and negative prediction error responses for juice amount, independently of juice type (Fig. S4). However, when neither juice type nor amount was fully predicted, the prediction error resulted from both attributes. Accordingly, the graded positive and negative prediction error responses reflected both juice type and amount (Fig. SB). This influence of juice type on prediction error responses was also apparent in the population responses (Fig. S9A; \(P < 0.0001 \), bootstrap test) even when juice amount was fully predicted (Fig. S9B and C, \(P < 0.0001 \), Wilcoxon rank-sum test). Regression of neuronal responses to all tested rewards onto the prediction errors in economic value was highly significant in both animals (Fig. 5C, \(R^2 = 0.17 \) and 0.16, respectively, \(P < 0.0001 \)). These data demonstrate that the prediction error response at the time of reward encodes the integrated value derived from reward type and amount. Thus, the reward responses mirrored the value encoding of the cue responses. As such they would be an eligible substrate for training economic value.

Discussion

This study investigated the relationship between dopamine prediction error responses and economic value. We demonstrated that the choices monkeys made among rewards of different types and different attributes satisfied the fundamental requirements

Fig. 3. Dopamine responses reflect the behavioral integration of reward attributes. (A) Areas under the ROC curve (auROC) for distributions of numerical subjective values (acquired through PEST) and neuronal responses with orthogonal variations of juice type and risk. An auROC > 0.5 indicates higher subjective value (neuronal response) for preferred juice (compared with nonpreferred juice) or preferred risk (compared with nonpreferred risk). Error bars represent SEM across days of behavioral testing and neurons. (B) As in A for monkey B. (C) Scatter plot of auROC measures of individual neurons for juice type and risk. For display purpose, only neurons that were significant in the linear regression (Fig. 2F) are shown. Dotted lines indicate the 95% bootstrapped confidence intervals estimated using single-cell data.

Fig. 4. Dopamine responses encode economic values of liquid and food rewards. (A) The preference order of monkey B among cues predicting different amounts of juice (black currant) or food (mashed mixture of banana, chocolate, and hazelnut). ~ and ~ are as in Fig. 1E. (B) Response of single neuron (from monkey B) to the cues. Line and color conventions are as in A. (C) As in B for averaged neuronal population responses. (Inset) Regression of normalized neuronal population responses to cues onto subjective value prediction errors measured using PEST.
of economic valuation, completeness and transitivity. Monkeys chose as if they were maximizing value on a common scale that reflected the integrated value of different reward attributes, such as amount, risk, and reward type. The dopamine neurons, at the time of the cues and at the time of the reward itself, encoded the integrated subjective values rather than changes in the objective properties of rewards. This coding scheme held not only when cues predicted different attributes of liquid rewards (amount, risk, and type) but also when the experiment involved rewards that were physically very different (liquid versus food). These neuronal responses paralleled the individual weightings used to construct value from reward attributes during choices.

We estimated subjective value with two independent techniques: binary choice that revealed the preferred option probabilistically over several trials and psychometric measurement of subjective equivalents that directly estimated the numerical values of the cues in units of one currency (29, 30). Binary choice is well tested, and the strong degree of choice transitivity provided a reliable ordinal value ranking of the rewards. The psychometric procedure provided a direct estimate of numerical value. When an individual is indifferent between two goods, then by definition those goods have the same numerical value. Hence, the indifference point of the psychometric procedure provided a simple estimate of numerical value in units of juice volume. The high degree of correlation (p < choice probability) and the numerical value estimates is strong evidence that our measurements were reliable. Thus, these measures provided a strong foundation for examining the encoding of prediction errors in the space of economic value.

We used a nonchoice task for the neuronal recording to attain the best isolation of prediction errors in value. Multiple lines of evidence suggest that the value of the cues was stable between choice (behavioral) and nonchoice (recording) tasks. First, the animals displayed the same ranking of cues regardless of the type of choice task (Figs. 1I and 4). Second, the preference of animals was stable over several days of testing (Fig. S1C). Third, and most importantly, the values were menu-invariant within the choice set (Fig. 1P). That is, the value of a cue was independent of the value of the other options. These results suggest that the economic values were, to a great extent, stable across time and behavioral context. The linear regression analysis demonstrated that the neuronal responses in the nonchoice task reflected the value function derived from behavioral choices (Figs. 2G and 4C). In other words, if phasic dopamine activity encodes economic value, then the value represented by dopamine neurons in a nonchoice context is consistent with the values used for choice.

Brain structures processing subjective value could provide the input used by dopamine neurons to compute prediction errors. Anatomical studies in rodents have demonstrated that dopamine neurons receive inputs from a variety of regions involved in reward processing, including the lateral hypothalamus, the amygdala, and the orbitofrontal cortex (OFC) (20). Neurons in the lateral hypothalamus code subjective reward value (33) and reflect internal states, such as satiety (34). These neurons receive inputs from the prefrontal cortex (PFC) (35), possibly conveying subjective value signals to dopamine neurons. Furthermore, GABAergic neurons of the ventral tegmental area, which directly inhibit dopamine neurons (36), could signal expected reward (37). Thus, this circuit could relay some of the observed subjective value signals to dopamine neurons (38, 39).

Given the evidence that dopamine neurons encode economic value, what role might this activity play in brain function? Dopamine neurons project axons to every structure that has been implicated in economic decision making. These include the striatum, OFC, medial prefrontal cortex, anterior cingulate cortex, amygdala, and parietal cortex (12). In these structures, dopamine is released most efficaciously by stimulation with a pattern that most closely resembles the phasic prediction error responses (40). The release of dopamine in downstream structures following valued events will affect the synaptic strength in these structures. Neurons in the striatum encode action values during economic choices (14). These signals are likely to be stored and updated through corticostriatal synapses on the dendrites of medium spiny neurons (41). Current views suggest that dopamine prediction error signals might differentially modulate the efficacy of these synapses in a time-dependent manner via subtypes of dopamine receptors (42). Accordingly, optogenetic stimulation of striatal dopamine D1 and D2 receptor-expressing neurons introduce opposing biases in the distribution of choices (43, 44). Thus, in this hypothetical model, the prediction error signal could be used to update the stored action values and thus affect subsequent choices.

Although dopamine neurons project axons to the prefrontal cortex, less is known about the role of their prediction error signal there. Most studies of frontal dopamine function infused D1 receptor (D1R) agonists and antagonists. These manipulations simulated changes in baseline dopamine levels produced by tonic dopamine activity, rather than dopamine transients produced by prediction error responses. Nevertheless, a recent study has demonstrated that disruption of D1R activity in PFC results in attenuation of value-based learning of cue-response contingencies and can lead to noneconomical choice patterns, such as perseveration (45). Furthermore, dopamine actions seem to extend beyond learning. D1R-mediated dopamine activity enhances the suppression of working memory fields in the PFC, sculpting and sharpening the response of the PFC network for greater task fidelity (46, 47). Moreover, the optimal dopamine levels seem to be task-dependent. Higher dopamine levels are useful for tasks that demand greater fidelity (47). Although dopamine neurons do not show enhanced activity during delay periods (48), the size of the cue-evoked prediction error response could function to set the PFC network to its optimal state, based on the subjective value of the task. Algorithmically, this would be akin to adjusting the slope of the softmax rule. Thus, dopamine prediction errors broadcast to the cortex might contribute to modulating economic behavior.

In summary, dopamine neurons encode prediction errors on a common scale of values derived from several reward attributes such as amount, risk, and type of reward. The demonstrated economic value coding would allow the dopamine signal to play a simple and rapid role in updating value-based decision mechanisms in target structures.

Methods

Animals. The Home Office of the United Kingdom approved all experimental procedures. Two male monkeys (Macaca mulatta) weighing 13.4 and 13.1 kg were used in the experiment. Neither animal had been used in any prior study.
Binary Choice Task. A central fixation spot indicated onset of each trial. After successful gaze fixation, two randomly drawn cues appeared to the left and right on a centered horizontal bar. Whenever which one of the cues was presented as a choice option against the currency cue, the currency cue consisted of a horizontal bar on a vertical axis (Fig. 1G and Fig. S2A). The height of the bar was a safe and explicit indicator of the volume of the black currant juice. The procedure converged by locating currency offers on either side of the true indifference value. The indifference value was measured by averaging the last two currency offers. We repeated the PEST procedure several times for each participant to ensure the estimated indifference value of the participant.

Identification and Recording of Dopamine Neurons. We recorded the extra-cellular activity of single dopamine neurons within the substantia nigra and in the ventral tegmental area. We localized the positions relative to the recorded cell’s extra-cellular and functional properties of surrounding cell groups (Fig. S3). We identified discharges from putative dopamine neurons using the following classic criteria: (i) polyphasic initially positive or negative waveforms followed by a prolonged positive component, (ii) relatively long durations (~2.5 ms measured at 100 Hz high-pass filter), and (iii) irregular firing at low baseline frequencies (fewer than eight spikes per second). Most neurons that met these criteria showed the typical phasic activation after unexpected reward (Fig. S4), which was used as a fourth criterion for inclusion. We did not test the responses of neurons to unexpected aversive stimuli. However, if any of the dopamine neurons encoded motivational salience, rather than reward value, they should have responded to unexpected reward (as a motivationally salient event) and thus have been sampled in our recordings (49). In total, we recorded 100 neurons and 96 met the criteria listed above and were used in our data analysis.

Analysis of Neuronal Data. The analysis of neuronal data used defined time windows that included the major positive and negative response components following fixation spot onset (100–400 ms), cue onset (80–340 ms and 150–500 ms in animals A and B, respectively), juice delivery (200–550 ms), and unexpected juice outside of the task (100–400 ms). Control time windows had identical durations and preceded immediately each respective task event. For measuring the mean neuronal activity in each task window by the ensemble average activity of the neuron in the control window.

Acknowledgments. We thank Christopher Harris, Camillo Padoa-Schioppa, Shunsuke Kobayashi, Martin O’Neill, Fabian Grabenhorst, Kelly Diederen, and Raymundo Baez Mendoza for discussions. This work was supported by the Wellcome Trust, European Research Council, and National Institutes of Health Caltech Conte Center.

References

Supporting Information

Lak et al. 10.1073/pnas.1321596111

SI Methods

Subjects, Surgery, Setup, and Behavioral Training. The Home Office of the United Kingdom approved all experimental procedures. Two male rhesus macaque monkeys (Macaca mulatta) weighing 13.4 and 13.1 kg, respectively, were used in the experiment. Neither animal had been used in any prior study. Animals were implanted with titanium head-restraint devices (DAHP; Gray Matter Research and custom-made for monkeys A and B, respectively) and stainless steel recording chambers (6-IAC-X0F; Crist Instruments and custom-made) under general anesthesia. During experiments, animals sat in a chair (Crist Instruments) positioned 30 cm from a computer monitor. Their eye position was monitored using infrared eye tracking (ETL200; ISCAN). Licking was monitored with an infrared optosensor positioned before the juice spout (VsAP; STM Sensors). Eye and lick signals were sampled at 200 Hz. Custom-made software (Matlab; MathWorks) running on a Microsoft Windows XP computer controlled the behavior. Liquid and food delivery were controlled via solenoid valve (SCB262C068; ASCO) and peristaltic pump (Crist Instruments), respectively, both controlled by a Windows XP computer.

The animals were habituated to sitting in the chair and fixing their gaze on the monitor to earn juice rewards. Before the experiment we measured the monkeys’ relative preferences in binary choices among and between juice rewards (black currant juice, orange juice, prune juice, strawberry juice, and lemon juice) and mashed food rewards (banana, chocolate + hazelnut (Nutella), or banana + chocolate + hazelnut). The rewards used in the experiment were chosen to maximize the subjective value difference between them. For monkey A juice 1 was black currant juice and juice 2 was strawberry juice. For monkey B juice 1 was black currant juice, juice 2 was orange juice, and the food reward was mashed mixture of banana + chocolate + hazelnut. The rewards used in the experiment were chosen to maximize the subjective value difference between them. For monkey A juice 1 was black currant juice and juice 2 was strawberry juice. For monkey B juice 1 was black currant juice, juice 2 was orange juice, and the food reward was mashed mixture of banana + chocolate + hazelnut. The rewards used in the experiment were chosen to maximize the subjective value difference between them. For monkey A juice 1 was black currant juice and juice 2 was strawberry juice. For monkey B juice 1 was black currant juice, juice 2 was orange juice, and the food reward was mashed mixture of banana + chocolate + hazelnut. The rewards used in the experiment were chosen to maximize the subjective value difference between them. For monkey A juice 1 was black currant juice and juice 2 was strawberry juice. For monkey B juice 1 was black currant juice, juice 2 was orange juice, and the food reward was mashed mixture of banana + chocolate + hazelnut.

Behavioral Testing. A binary choice task served to assess the animals’ preferences for the different rewards (Figs. 1A and 4A and Fig. S1A). A central fixation spot indicated onset of each trial. Animals were required to direct their gaze toward the fixation spot within 1 s of spot appearance and hold it there for 0.5 s. Subsequently, two cues (randomly drawn) appeared to the left and right on the monitor. The animal had 1 s to indicate its choice by shifting its gaze to the center of the chosen cue and holding it there for another 0.5 s. Then the unchosen cue disappeared and the chosen cue remained on the screen for additional 1 s. The chosen reward was delivered at offset of the chosen cue. Trials were interleaved with intertrial intervals of random durations (2.5 ± 1.5 s exponentially distributed). Unsuccessful fixation during any task epoch resulted in a 6-s timeout. For the juice-only experiment, we collected 1,440 and 1,510 binary choice trials from monkeys A and B, respectively, over 4 d of testing. For the juice–food experiment, we collected 580 trials over 7 d of testing.

PEST was used to measure the amount of black currant juice that was subjectively equivalent to the subjective value associated with each reward. The rules governing the PEST procedure were adapted from Luce (1). Each PEST sequence consisted of several consecutive trials during which one of the cues was presented as a choice option against the currency cue. The currency cue consisted of a horizontal bar on a vertical axis (Fig. 1A and Fig. S2A). The height of the bar was a safe (riskless) and explicit indicator of the volume of the black currant juice. On the initial trial of a PEST sequence, the height of the bar in the currency cue (and thus the volume of black currant juice predicted by the cue) was chosen at random. Based on the animal’s choice between the two cues, the value of the currency cue was adjusted on the following trial (Fig. S2B). If the animal chose the alternate cue on trial t, then the volume offered by the currency cue was increased by e on trial t + 1. However, if the animal chose the alternate cue on trial t, the volume offered by the currency cue was reduced by e on trial t + 1. Initially, e was large. After the third trial of a PEST sequence, e was adjusted according to the doubling rule and the halving rule. Specifically, every time two consecutive choices were the same, the size of e was doubled, and every time the animal switched from one option to the other, the size of e was halved. Thus, the procedure converged by locating subsequent currency offers on either side of the true indifference value and reducing e until the interval containing the indifference value was small (Fig. S2C). The size of this interval is a parameter set by the experimenter, called the exit rule. For our study, the exit rule was 20 μL. When e fell below the exit rule, the PEST procedure terminated, and the indifference value was calculated by taking the mean of the final two currency cues. A typical PEST session lasted 15–20 trials. We repeated the PEST procedure several times for each of reward over several days of testing (for the juice-only experiment, 25 and 40 times per cue for monkeys A and B, respectively; for the juice–food experiment, 10 times per cue for monkey B). This allowed us to compare the distribution of indifference values acquired for each cue (Fig. S2D) and measure the area under the receiver operating characteristic curve (auROC, Fig. 3).

Identification and Recording of Dopamine Neurons. Custom-made, movable, glass-insulated, platinum-plated tungsten microelectrodes were positioned inside a stainless steel guide cannula and advanced by an oil-driven micromanipulator (Narishige). Action potentials from single neurons were amplified, filtered (band-pass 100 Hz to 3 kHz), and converted into digital pulses when passing an adjustable time–amplitude threshold (Bak Electronics). We stored both analog and digitized data on a computer using custom-made data collection software (Matlab).

We recorded the extracellular activity of single dopamine neurons within the substantia nigra and in the ventral tegmental area (A8, A9, and A10). We localized the positions relative to the recording chamber using X-ray imaging and functional properties of surrounding cell groups (Fig. S3). Postmortem histology was postponed owing to ongoing experiments with these animals. Dopamine neurons were functionally localized with respect to (i) the trigeminal somatosensory thalamus explored in awake animals and under general anesthesia (very small perioral and intracranial receptive fields, high proportion of tonic responses, 2- to 3-mm dorsoventral extent), (ii) tonic, position coding ocular motor neurons, and (iii) phasic direction coding ocular premotor neurons in awake animals (Fig. S3). We identified discharges from putative dopamine neurons using the following classical criteria: (i) polyphasic initially positive or negative waveforms followed by a prolonged positive component, (ii), relatively long durations (>2.5 ms measured at 100-Hz high-pass filter), and (iii) irregular firing at baseline frequencies (fewer than eight.
spikes per second). Most neurons that met these criteria showed the typical phasic activation after unexpected reward (Fig. S4), which was used as a fourth criterion for inclusion. We rejected all neuronal recordings with <10 trials per experimental conditions. In total, we recorded 100 neurons (80 in the juice-only experiment and 20 in the juice–food experiment) and 96 (77 in the juice-only experiment and 19 in the juice–food experiment) met the criteria listed above and were used in our data analysis. During our initial recording sessions in the juice-only experiment \((n = 11) \) the task did not include a fixation spot. The theoretical prediction error at the time of the cue depends on the presence or absence of a fixation spot, but the theoretical prediction error at the time of the reward does not. The fixation spot predicted the average value of all cues. Therefore, when the task contains the fixation spot, the prediction errors and the dopamine prediction error responses are both positive and negative (Fig. 2), as

\[
PE_{\text{cue}} = \text{Cue}_{\text{value}} - \text{Fixation spot}_{\text{value}}.
\]

Without a fixation spot, the animals could not predict when the cue would appear. Therefore, their prediction of future value was close to zero before cue onset, and the prediction error was always positive, as

\[
PE_{\text{cue}} = \text{Cue}_{\text{value}} - 0.
\]

Because of the difference between these two conditions, we removed these neurons recorded without a fixation spot \((n = 11) \) from the analysis of the cue responses.

In contrast, prediction errors caused by rewards were identical in both cases. The prediction error at the time of the reward depended only on the preceding cue. The dopamine neurons reflected this, and for this reason we included in our reward response analysis all collected data (i.e., with and without a fixation spot).

During neuronal recordings, each trial began when a fixation spot appeared at the center of the screen (Fig. 2A). The animal directed its gaze to it and held it there for 0.5 s. The fixation spot disappeared, and then one of the cues occurred in pseudorandom order. The cue remained on the screen for 1.5 s and reward was delivered at cue offset. Unsuccessful central fixation resulted in a 6-s time-out. There was no behavioral requirement after the central fixation time had ended.

Analysis of Behavioral Data. By “choice probability” we refer to its definition used in the economy literature (2), rather than the concept used in sensory neurophysiology to relate neuronal response and behavioral judgment (3).

If an individual prefers cue \(a \) over cue \(b \) and cue \(b \) over cue \(c \), then the weak axiom of stochastic transitivity requires the probability of choosing cue \(a \) over cue \(c \) to be \(\geq 50\% \) (4). The strong axiom of stochastic transitivity requires the probability of choosing cue \(a \) over cue \(c \) to be greater than or equal to the maximum observed choice probability between the two other choice conditions (4).

A binomial test on the choice probabilities from each cue pairing served to detect significant preferences (Figs. 1E and 4A). Two cues were considered to have different subjective values if the monkey chose one cue over another in significantly more than 50% of trials. We used Bonferroni correction to adjust significance for multiple comparisons.

We used the response strength theory to predict the choice probabilities for pairs of cues from the observed choice probabilities of other cues (2). Let \(P(a,b) \) denote the probability that \(a \) is chosen over \(b \) when they are presented together to an agent. Likewise, let \(P(b,c) \) denote the probability that \(b \) is chosen over \(c \). We predicted \(P(a,c) \) from the observation of \(P(a,b) \) and \(P(b,c) \), when \(0 < P < 1 \), using the following equation:

\[
P(a,c) = \frac{P(a,b) \times P(b,c)}{P(a,b) \times P(b,c) + ((1 - P(a,b)) \times (1 - P(b,c)))}.
\]

Pearson correlation related the observed and predicted choice probabilities (Fig. 1F).

To measure the effect of juice type and risk on behavioral measures of economic value, we calculated the auROC (Fig. 3).

Analysis of Neuronal Data. We constructed peristimulus time histograms (PSTHs) by aligning the neuronal impulses to task events and then averaging across multiple trials. The impulse rates were calculated in nonoverlapping time bins of 10 ms. PSTHs were smoothed using a moving average of 70 ms for display purposes.

The analysis of neuronal data used defined time windows that included the major positive and negative response components following fixation onset \((100-400 \text{ ms}) \), cue onset \((80-340 \text{ ms} \) and \(150-500 \text{ ms} \) in animals A and B, respectively), and juice delivery \((200-550 \text{ ms}) \). Analysis of responses to unpredicted juice outside of the task used a time window of 100-400 ms after juice onset. The longer durations of juice delivery within compared with outside the task required analysis windows of different durations. Control time windows had identical durations and preceded immediately each respective task event. For normalization, in each neuron we divided the neuronal activity in each time window by the ensemble average activity of the neuron in the control window. Thus, a neuronal response that was not modulated by a task event had a normalized activity equal to 1 for that task event.

To assess basic reward sensitivity of neurons, a Wilcoxon signed-rank test compared responses to unpredicted reward with control activity preceding the reward. Comparisons between different experimental situations used a Wilcoxon rank-sum test on the normalized neuronal data in the respective time windows. We used normalized responses from each neuron and from the population and regressed them (single linear regression) on the subjective value prediction errors of the cues and rewards assessed by the PEST procedure (Figs. 2F and G, 4C, and 5C). We used one-way ANOVAs to test the effect of different trial types on the dopamine responses to the fixation spot (Fig. S5) and single linear regression to explore the effect of accumulated reward on responses to fixation spot (Fig. S7E). We used separate multiple linear regressions to explore the effects of the past six cues and the past six rewards on the neuronal responses to cues and fixation spot (Fig. S7A–D).

To measure the individual effects of the two reward attributes (juice type and risk) on neuronal responses, we calculated the auROC in neurons whose responses showed a significant regression on subjective value (Fig. 3). We used an identical analysis to measure and compare the neuronal responses at the time of juice delivery (Fig. S9A). A bootstrap test (with 200,000 resamples) served to compute the confidence intervals and statistical significances \(P < 0.05 \) of the single-neuron auROC as well as population averages of single-neuron auROC (Fig. 3C and Fig. S9A).

SI Results

Analysis of Saccadic Response Time in the Binary Choice Task and in the Nonchoice Recording Task. We sought to determine whether animals’ saccadic response time (i.e., interval between cue onset and saccade arrival to the chosen cue) in the binary choice task could reflect the subjective ranking of cues. To perform this analysis we only included trials in which there was a clear difference between the average values of the presented cues (i.e., overall choice probability \(>70\% \)) and the monkey correctly chose the cue with the higher average value. Response times measured in these trials showed weak but significant inverse correlation with the subjective value of the chosen cue (Fig. S1D, \(P < 0.05 \), linear regression).
We analyzed saccadic response times (i.e., interval between fixation spot onset and saccade arrival) in the nonchoice recording task. Response times were 480 ± 12 ms and 470 ± 22 ms in monkeys A and B, respectively (mean ± SEM across sessions). Saccadic response times were not significantly different following trials with different cues (P > 0.5 and P > 0.3 in monkeys A and B, respectively, one-way ANOVA) or different outcomes (P > 0.5 and P > 0.2 in monkeys A and B, respectively, one-way ANOVA).

Effect of Different Behavioral Variables on the Neuronal Response to Reward-Predicting Cues and Fixation Spot. The single linear regression analysis (Fig. 2F and G) showed that subjective value of cues could significantly account for the variance in the dopamine responses with $R^2 = 0.27$ and 0.28 in monkeys A and B, respectively. This analysis, when performed on averaged responses of single neurons (rather than trial-by-trial responses) and on averaged population responses (rather than neuron-by-neuron responses) resulted in a higher coefficient of determination. Done this way, the R^2 for the highlighted neuron in Fig. 2 is 0.92 and average R^2 across significant and nonsignificant single neurons was 0.43 and 0.41 in monkeys A and B, respectively. The population R^2 was 0.78 and 0.84 in monkeys A and B, respectively.

To explore whether variables other than the subjective value of the reward-predicting cue could explain the trial-by-trial dopamine responses, we examined the effect of trial history and accumulated trials over a session. We first performed a multiple linear regression of the cue responses from individual neurons on the current subjective value plus the previous six cues’ subjective value and a second multiple linear regression of the cue response on the subjective value of the six previous rewards. Consistent with our single linear regression analysis (Fig. 2), multiple linear regressions confirmed that the subjective value of the current cue had a highly significant effect on the neuronal responses (multiple linear regression, $P < 0.00001$), whereas other tested variables had smaller effects (Fig. S7 A and B). Only the subjective value of the cue presented in the previous trial reached significance, and only in monkey B (multiple linear regression, $P = 0.005$, Fig. S7A, Right). We performed the same analyses on the neuronal response to the fixation spot and found no effect (multiple linear regression, $P > 0.1$, Fig. S7 C and D). Next, we performed single linear regression of the neuronal responses to fixation spot on the accumulated number of trials during a recording session. This variable had a weak effect on the dopamine responses to fixation spot that reached significance in monkey B (Fig. S7E, $P = 0.001$). Consistent with the behavioral performance, the negative regression coefficient indicated that neuronal responses to the fixation spot were stronger during the early trials of the session compared with later trials. The accumulated number of trials had no significant effect on the responses to cues ($P > 0.1$).

Fig. S1. Binary choice task. (A) Task sequence. From left to right: each trial started with presentation of a fixation spot on the center of the screen. The animal directed its gaze to the fixation spot within 1 s of its appearance and held it there for 0.5 s. Subsequently, two cues (randomly drawn) appeared on the screen. The animal indicated its choice within 1 s. After fixating on the chosen cue for an additional 0.5 s, the unchosen option cue disappeared. The chosen option cue remained on the screen for an additional 1 s, and reward was delivered at cue offset. Trials were separated by randomly varying intertrial intervals of 2.5 ± 1.5 s. Unsuccessful fixation during any task epoch resulted in a 6-s time-out. (B) Choice probabilities in monkey B. Each plot indicates the probability of choosing the test cue (shown on the top of the plot) over alternative cues (other five cues used in the experiment). The animal showed clear bias in selecting among cues. (C) Choice probabilities at the given value rank were stable over multiple days of testing. The choice probabilities of cues that animals were indifferent to were averaged between them. The probabilities were estimated across 200 and 250 consecutive trials with monkeys A and B, respectively. (D) Saccadic response time reflected the subjective value of the chosen cue in trials in which animals correctly chose the option with higher average subjective value.
Fig. S2. Behavioral assessment using the method of PEST. (A) A PEST sequence. From right to left: the animal directed its gaze to the central fixation spot within 1 s of its appearance and held it there for 0.5 s. Then two option cues were presented simultaneously: One option was drawn from the cues and the other option was the currency cue. The animal indicated its choice within 1 s. After fixating the chosen cue for an additional 0.5 s, the unchosen option cue disappeared. The chosen cue remained on the screen for an additional 1 s, and reward was delivered at cue offset. Trials were separated by randomly varying intertrial intervals of 2.5 ± 1.5 s. Unsuccessful fixation during any task epoch resulted in a 6-s time-out. (B) The choice phase in three consecutive trials of a PEST sequence. The currency cue was adjusted based on the animal’s previous choice. (C) Two PEST sequences. The y axis indicates the amount of black currant juice offered by the currency cue on each trial for a highly valued and a less valued cue (green and blue, respectively). The sequence terminated when the trial-to-trial adjustment in the currency cue fell below a predefined exit rule (20 μL). (D) Distributions of indifference values for highly valued and less valued cues (green and blue, respectively) in monkey B. For display purposes, the superimposed transparent areas show Gaussian fits on the value distributions.
Fig. S3. Localization of dopamine recording sites. (A, Upper) X-ray of lateral view of monkey A’s skull with a guide tube directed toward the midbrain area. (A, Lower) Composite figure of recording area in midbrain. The schematic drawing of the base of the skull was obtained from Aggleton and Passingham (1). Nissl-stained standard sagittal histological section from Macaca mulatta was obtained from www.brainmaps.org (slide 64/295). All figure components are displayed at the same scale as the X-ray shown in A, Upper. (B) Anteroposterior (relative to interaural line) and dorsoventral (relative to midline) view of the recording track in monkey A (Upper) and monkey B (Lower). Symbol sizes indicate numbers of neurons recorded in each track (right hemisphere in both animals). (C) Surface view of recording locations in monkey A (Left) and monkey B (Right) in mediolateral and anteroposterior axes. Image reprinted with kind permission of Springer Science+Business Media from ref. 1.

Fig. S4. Dopamine responses to unpredicted juice delivery. Dopamine neurons responded to free rewards (0.4 mL of juice) delivered randomly during intertrial intervals. (A) The PSTH averaged across all neurons recorded in juice-only experiment (40 and 37 neurons in monkeys A and B, respectively). (B) The response to unpredicted juice from the example neuron shown in Figs. 2 and 5 (left) and an example neuron from monkey B (right).

Fig. S5. Dopamine responses to fixation spot. Identical dopamine population response to fixation spot onset in different trial types (monkey A, main graph; monkey B, Inset).

Fig. S6. Dopamine neuronal activity in monkey B in response to cues. (A) Population neuronal response to cues in monkey B (line conventions demonstrated below the corresponding cues). The horizontal black bar shows the temporal time window used for the statistical analysis of the neuronal data shown in Figs. 2 and 3. (B) The population neuronal response for singular reward attributes in monkey B.
Fig. S7. Effect of different behavioral variables on the neuronal response to cues and fixation spot. (A) Effect of value of current and previous cues on the dopamine response to the cue. In each panel multiple regression betas have been plotted. Error bars are SEM. **P < 0.001; *P < 0.01. (B) Effect of value of previous rewards on the dopamine response to the cue. (C) Effect of value of upcoming and previous cues on the dopamine response to the fixation spot. (D) Effect of value of previous rewards on the dopamine response to the fixation spot. (E) Effect of accumulated trials on the behavioral performance (i.e., successful ocular fixation) and the dopamine response to the fixation spot.
Fig. S8. Dopamine responses in monkey A to cues with large difference in risk. (A) Subjective value of a cue, predicting a equiprobable gamble between 0.1 and 1.2 mL, in monkey A. Measurements were done using PEST (n = 29). Although this animal was risk-neutral for gambles tested in the main experiments (Fig. 1), it showed clear risk-seeking behavior when tested with a gamble containing large risk. (B) Dopamine responses (monkey A) to the risky and safe cues. Consistent with the behavioral data, the neuronal responses (n = 5) are larger in response to the risky cue.

Fig. S9. Dopamine prediction error responses to different juice types. (A) Scatter plot of neuronal auROC measures when juice type was predicted (horizontal axis) and when juice type was not fully predicted (vertical axis). An auROC >0.5 indicates higher neuronal activity in response to preferred juice compared with nonpreferred juice. The auROC measures for each neuron are shown separately for positive (red) and negative (black) prediction error responses. Gray bars indicate the 95% bootstrapped confidence interval of auROC. The responses differed significantly between the two juices only when the type of juice was not fully predicted (P < 0.0001, bootstrap test). (B) Differential prediction error responses of an individual dopamine neuron to more preferred juice compared with less preferred juice. Juice magnitude was fully predicted (Upper, PSTH; Lower, rastergram). (C) As in B, Upper but for the neuronal populations recorded in each animal. The horizontal black bar indicates the time window used for statistical data analysis.

Lak et al. www.pnas.org/cgi/content/short/1321596111
Table S1. Transitivity of choices in the binary choice task

<table>
<thead>
<tr>
<th>Monkey A</th>
<th></th>
<th></th>
<th>Monkey B</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>P(a>b)</td>
<td>P(b>c)</td>
<td>P(a>c)</td>
<td>P(a>b)</td>
<td>P(b>c)</td>
</tr>
<tr>
<td>0.57</td>
<td>0.89</td>
<td>0.97</td>
<td>0.67</td>
<td>0.56</td>
<td>0.74</td>
</tr>
<tr>
<td>0.57</td>
<td>0.81</td>
<td>1.00</td>
<td>0.67</td>
<td>0.74</td>
<td>0.87</td>
</tr>
<tr>
<td>0.57</td>
<td>0.85</td>
<td>0.96</td>
<td>0.74</td>
<td>0.51</td>
<td>0.74</td>
</tr>
<tr>
<td>0.97</td>
<td>0.59</td>
<td>1.00</td>
<td>0.74</td>
<td>0.72</td>
<td>0.87</td>
</tr>
<tr>
<td>0.97</td>
<td>0.81</td>
<td>0.96</td>
<td>0.74</td>
<td>0.76</td>
<td>0.85</td>
</tr>
<tr>
<td>0.97</td>
<td>0.81</td>
<td>1.00</td>
<td>0.74</td>
<td>0.63</td>
<td>0.87</td>
</tr>
<tr>
<td>1.00</td>
<td>0.70</td>
<td>0.96</td>
<td>0.74</td>
<td>0.81</td>
<td>0.85</td>
</tr>
<tr>
<td>1.00</td>
<td>0.84</td>
<td>1.00</td>
<td>0.87</td>
<td>0.81</td>
<td>0.85</td>
</tr>
<tr>
<td>0.96</td>
<td>0.58</td>
<td>1.00</td>
<td>0.56</td>
<td>0.63</td>
<td>0.74</td>
</tr>
<tr>
<td>0.89</td>
<td>0.59</td>
<td>0.81</td>
<td>0.56</td>
<td>0.81</td>
<td>0.75</td>
</tr>
<tr>
<td>0.89</td>
<td>0.81</td>
<td>0.85</td>
<td>0.74</td>
<td>0.54</td>
<td>0.75</td>
</tr>
<tr>
<td>0.89</td>
<td>0.81</td>
<td>0.91</td>
<td>0.51</td>
<td>0.63</td>
<td>0.76</td>
</tr>
<tr>
<td>0.81</td>
<td>0.70</td>
<td>0.85</td>
<td>0.51</td>
<td>0.81</td>
<td>0.76</td>
</tr>
<tr>
<td>0.81</td>
<td>0.84</td>
<td>0.91</td>
<td>0.72</td>
<td>0.54</td>
<td>0.76</td>
</tr>
<tr>
<td>0.85</td>
<td>0.84</td>
<td>0.91</td>
<td>0.63</td>
<td>0.54</td>
<td>0.81</td>
</tr>
<tr>
<td>0.59</td>
<td>0.70</td>
<td>0.81</td>
<td>0.60</td>
<td>0.56</td>
<td>0.51</td>
</tr>
<tr>
<td>0.59</td>
<td>0.84</td>
<td>0.81</td>
<td>0.60</td>
<td>0.74</td>
<td>0.72</td>
</tr>
<tr>
<td>0.81</td>
<td>0.58</td>
<td>0.81</td>
<td>0.60</td>
<td>0.75</td>
<td>0.76</td>
</tr>
<tr>
<td>0.70</td>
<td>0.58</td>
<td>0.84</td>
<td>0.74</td>
<td>0.60</td>
<td>0.67</td>
</tr>
</tbody>
</table>

If an individual prefers cue a over cue b and cue b over cue c, then the weak axiom of stochastic transitivity requires the probability of choosing cue a over cue c to be ≥50%. For every combination of three cues, the choice probabilities in each animal satisfied the weak axiom of stochastic transitivity. The strong axiom of stochastic transitivity requires the probability of choosing cue a over cue c to be greater than or equal to the maximum observed choice probability between the two other choice conditions. This requirement was satisfied in 29 out of 40 combinations, as highlighted by boldface type in the table.