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The pursuit of distant rewards through planned behavior is a key  
function of the primate brain. Just as monkeys search their large  
habitats for the best foods, humans plan their careers toward the  
benefits of future rewards. Although planned, goal-directed behaviors 
can differ in timescale, from foraging across food patches to human 
economic saving, psychological and economic theories suggest a 
common principle1–3: the formation of an internal plan to obtain a 
distant goal and its subsequent pursuit over several steps. Here we 
investigated the neuronal mechanisms for reward-based planning by 
combining the advanced behavioral capacities of nonhuman primates 
with single-neuron recordings.

Planning functions have traditionally been ascribed to the fron-
tal lobe4–6. Neurophysiological experiments have provided detailed 
accounts of frontal lobe activity during generation, execution and 
updating of movement plans7–10. Neuronal activity in frontal lobe and 
connected basal ganglia also precedes self-initiated movements11–14, 
which constitute the effective means of carrying out a plan. Despite 
these advances, a fundamental question has remained unanswered: 
as planned behavior is typically motivated by the prospect of reward, 
what are the neural processes directing action plans toward internally 
defined, distant reward goals?

We addressed this question by recording the activity of single 
neurons in the amygdala, a nuclear structure in the medial temporal 
lobe implicated in reward and emotion15–22 with inputs to frontal 
lobe–basal ganglia systems involved in action planning23. We hypoth-
esized that amygdala neurons might show planning activity related to 
internally generated reward goals and their values.

In addition to its well-known roles in emotion, the amygdala is 
an important component of the reward system15,16,20. In animals, 
amygdala neurons encode the value of sensory stimuli15,21,22,24,25 
and amygdala lesions impair reward-guided behaviors16,17,26,27.  

The human amygdala also processes rewards18,28 and reward-based 
decisions18,29,30, and amygdala damage is associated with decision 
impairments31,32. Accordingly, current theories view the amygdala as an 
associative learning and valuation system that regulates affective, cogni-
tive and autonomic processes, as well as decisions and behavior15–19,21.  
However, the amygdala’s role in the pursuit of internally defined,  
distant rewards through planned behavior is still unexplored.

Here we show that, during planned behavior, the primate brain 
generates future-oriented activity related to self-defined goals, which 
persists until a distant reward is received. We recorded the activity 
of amygdala neurons while monkeys produced choice sequences to 
save rewards over several steps toward internal goals. We found amy-
gdala neurons with prospective activity that reflected the animal’s 
plan to obtain specific rewards by saving for a given number of steps. 
The activities of different neurons reflected crucial components of 
the animal’s plan, including the subjective value of the current plan 
(‘sequence value’) and the planned number of saving steps (‘sequence 
length’). This planning activity began before the animal initiated a 
saving sequence and reoccurred with each step during pursuit of the 
plan as the animal progressed toward reward. Such prospective neu-
ronal activity seems suited to guide planned behavior over multiple 
steps toward distant reward goals.

RESULTS
Sequential reward-saving task
Two monkeys performed in a sequential reward-saving task in which 
they could follow internal plans toward obtaining reward at the end 
of a sequence of trials. On each trial (each step within a sequence), 
the animals freely chose to save juice reward for future consumption  
or spend the already saved amount (Fig. 1a). Consecutive save  
choices increased the available juice amount as determined by a given 
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Planning activity for internally generated reward goals 
in monkey amygdala neurons
István Hernádi1–3, Fabian Grabenhorst1,3 & Wolfram Schultz1

The best rewards are often distant and can only be achieved by planning and decision-making over several steps. We designed 
a multi-step choice task in which monkeys followed internal plans to save rewards toward self-defined goals. During this self-
controlled behavior, amygdala neurons showed future-oriented activity that reflected the animal’s plan to obtain specific rewards 
several trials ahead. This prospective activity encoded crucial components of the animal’s plan, including value and length of the 
planned choice sequence. It began on initial trials when a plan would be formed, reappeared step by step until reward receipt, 
and readily updated with a new sequence. It predicted performance, including errors, and typically disappeared during instructed 
behavior. Such prospective activity could underlie the formation and pursuit of internal plans characteristic of goal-directed 
behavior. The existence of neuronal planning activity in the amygdala suggests that this structure is important in guiding behavior 
toward internally generated, distant goals.
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‘interest rate’ (Fig. 1b and Online Methods equation (1)). Choices 
were made by a saccade toward the save or spend cue; pre-trained save 
cues indicated the current interest rate. The animals freely determined 
the length of each saving sequence. This self-controlled and sequential 
task design allowed the animals to plan their behavior over multiple 
trials and anticipate final rewards more than 100 s in advance (up to 
9 consecutive trials with a ~12-s cycle time). Randomized cue posi-
tions precluded planning of left-right action sequences. To confirm 
the internal nature of planning, we also tested externally instructed 
‘imperative’ save-spend sequences with comparable lengths.

Our task incorporated two key aspects of economic saving1: the 
internal formation of a plan to obtain a distant reward goal and its 
pursuit over sequential choices. The final reward in a saving sequence 
corresponded to the animal’s goal and the sequence length corre-
sponded to the means by which to achieve the goal. These features 
made the saving task a suitable model to investigate reward-based 
planning and goal pursuit1–3.

As economic choices critically depend on value, testing the 
hypothesis of planning activity in reward neurons required us to 
determine the subjective values that the animals associated with  
specific saving plans. These values depended not only on final reward 
amounts but also on expenditure related to sequence length: because 
higher rewards typically required longer sequences (determined by 
the current interest rate, Fig. 1b), their value was compromised  
by temporal delay and physical effort. To capture these factors 
in a direct manner, we followed the general notion of standard  
economic choice theory that estimates subjective values from behavioral  

choices. We derived the value of different saving sequences by  
calculating the relative frequency with which the animals pro-
duced each sequence length within a given interest rate (Fig. 1b). 
Accordingly, for a given interest rate, a sequence had a higher subjective  
value if the animal chose it more frequently than other sequences. 
To account for reward magnitude differences between interest rates, 
choice frequencies for different sequences were weighted by associ-
ated reward magnitudes (Fig. 1b). Subjective values determined in 
this manner constituted a decision variable for the animals which 
we call sequence value (that is, the subjective value associated with 
a given saving sequence; Fig. 1b).

Sequence value differed from final reward magnitude as it was a non-
monotonic function of sequence length: the shape of the value function 
depended on the relative frequency with which a sequence was cho-
sen. By contrast, final reward magnitude increased monotonically with 
sequence length (Fig. 1b). Because sequence values were derived from 
the animals’ relative choice frequencies, they effectively incorporated 
both benefits related to reward amounts and expenditures related to 
waiting times and physical effort. Typically, sequence value functions 
increased with sequence length up to a peak and then decreased with 
longer sequences that the animal chose less frequently, likely owing 
to temporal discounting and physical effort cost. This nonlinearity 
in value functions made it possible to distinguish neuronal coding of 
subjective sequence value from objective sequence length and reward 
magnitude. To control for valuations of save and spend choice options 
on single trials, we also defined trial-by-trial subjective values (‘spend 
value’ and ‘save value’; Online Methods equations (2) and (3)).
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Figure 1  Reward-saving behavior in monkeys.  
(a) Sequential saving task. Animals chose  
freely to save or spend reward and determined  
internally the length of each saving sequence.  
Consecutive save choices increased reward  
amounts (determined by interest rate); a spend 
choice resulted in reward delivery. Sequences 
lasted up to 9 consecutive trials (~12 s cycle  
time per trial). (b) Saving behavior, reward  
increases and subjective value functions for  
different interest rates. Bars: relative  
frequencies with which animals produced  
different sequences, combined across animals. 
Green curves: reward amounts for different  
sequences. Magenta: subjective values  
(normalized), combining choice frequencies  
with reward magnitudes. With the highest  
interest rate, reward stagnated after seven  
trials; most neuronal recordings involved  
intermediate interest rates. (c) Monkeys  
adapted their saving behavior to interest rate.  
Linear regression of weighted mean sequence  
length on interest for main task (black, n = 17 
mean lengths) and control test with uncued  
changes in interest (magenta, n = 9). Data  
combined across animals. (d) Linear regression 
of reaction time on final sequence length.  
Reaction times (equally populated bins pooled 
over animals and interest rates, z-normalized  
within sessions) on spend trials (black, averaged 
over n = 3,033 trials) and save trials (magenta, 
averaged over n = 8,500 trials) were shorter  
for longer sequences (that is, higher rewards). 
(e) Logistic regression of trial-by-trial choices.  
Spend or save value: subjective value associated 
with spending (P = 1.0 × 10−16, t-test) or saving (P = 1.0 × 10−16) on current trial; sequence value: subjective sequence value (spend value on final trial). 
Bias: constant (P = 0.037); Interest: interest rate (P = 0.036); Cue position: left/right save cue position (P = 1.6 × 10−5); Juice/day: consumed juice  
(P = 4.3 × 10−13); Monkey: animal identity (P = 0.886). **P < 0.005, *P < 0.05; n.s., not significant. Error bars: s.e.m.
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Behavioral data
We calculated the animals’ relative choice frequencies for different sav-
ing sequences, separately for different interest rate conditions (Fig. 1b).  
The animals saved more when interest was high: mean saving lengths 
increased with higher interest rates (P = 0.003, linear regression;  
Fig. 1b,c and Supplementary Fig. 1a). Typically, at the beginning of a 
testing session, the animals adapted to the current interest rate within 
a few trials (Supplementary Fig. 1b). For interest rates with different 
rates of reward return, the animals’ behavior approximated optimal-
ity by maximizing reward rate (Supplementary Fig. 1c,d). Control 
experiments confirmed that the animals adjusted their behavior even 
when interest changed without notification and tracked accumulated 
reward over consecutive trials (Fig. 1c and Supplementary Fig. 1e,f). 
Thus, saving was adaptive and internally controlled. It did not simply 
reflect conditioned or automated behavior.

To confirm that the animals planned saving sequences in advance, 
we examined trial-by-trial reaction times. Mean reaction times  
were shorter on spend trials than on save trials (Fig. 1d; z = −48.57, 
P = 1.0 × 10−10, Wilcoxon test), suggesting higher motivation  
for immediately upcoming rewards. Reactions on spend trials  
were also faster after longer saving sequences—that is, when the 
animals would obtain higher rewards (Fig. 1d; r = −0.85, P = 0.007, 
linear regression)—which demonstrated that the animals tracked 
internally the accumulated reward and were more motivated  
for higher amounts. Critically, reactions across consecutive save  
trials within a sequence, while the animals progressed toward  
their current goal, also depended on final sequence length, with  
faster reactions during longer sequences (r = −0.81, P = 0.009;  
Fig. 1d). This suggested that the animals anticipated final reward  
outcomes several trials in advance, consistent with internally  
planned, goal-directed saving.

To confirm the behavioral importance of subjective values, we 
regressed trial-by-trial save-spend choices on subjective values 
using logistic regression (Online Methods equation (4)). Spend value 
reflected the subjective value expected from spending on the current 
trial, whereas save value reflected the average value expected in all 
future trials of the current saving sequence. Our main planning vari-
able ‘sequence value’ corresponded to the spend value on the final trial 
of a sequence (that is, the spend value actually chosen); accordingly, 
its influence on choice was captured by the spend value regressor. 
We used independent behavioral data for deriving subjective values 
(n = 5,600 trials) and for estimating logistic regression coefficients 
(n = 5,933 trials).

Logistic regression identified subjective values as main explanatory 
variables for saving behavior (Fig. 1e): higher spend values decreased 
the likelihood of saving on the current trial (negative β), whereas 
higher save values increased saving (positive β). A stepwise logistic 
regression confirmed these results by selecting the key variables spend 
value and save value (both P < 10−16). Regressing trial-by-trial reac-
tion times on subjective values confirmed and extended these results: 
reaction times reflected subjective values, with faster responses for 
higher sequence values (P = 0.001, multiple linear regression; Online 
Methods equation (5) and Supplementary Fig. 2a,b), even as early as 
the initial saving trial (P = 0.004). Similar results were obtained from 
analysis of licking durations in monkey A (Supplementary Fig. 2c). 
Taken together, behavioral data confirmed subjective valuation of 
trial-by-trial choices, saving sequences and final reward goals, con-
sistent with internally planned saving.

Planning activity in amygdala neurons: single-neuron data
While the animals saved rewards step by step toward self-defined 
goals, a striking group of amygdala neurons signaled the animals’ 
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Figure 2  A single amygdala neuron with 
prospective activity that reflected the  
value of the monkey’s internal saving plan.  
(a) Activity during step-by-step saving  
depended on the final saving sequence that 
the animal eventually produced. Specifically, 
activity depended on the subjective value of  
the current sequence (‘sequence value’),  
which would only be achieved several trials 
ahead. Top: activity (spike density functions) 
during three saving sequences of different 
lengths. Activity during fixation (yellow 
area) was highest for the sequence in which 
the monkey would eventually spend on the 
fifth trial, as this sequence had the highest 
subjective value (Imp/s: impulses per second; 
in raster display, ticks indicate impulses and 
rows indicate trials). Bottom: activity averages 
for all sequence lengths (for example, light pink 
activation indicates mean fixation activity  
for all five-trial sequences, averaged over  
trials 1 to 5). Activity reflected sequence  
value (magenta curve, normalized), rather  
than linear sequence length or objective  
reward amount (green curve, normalized). 
Behaviorally derived sequence values  
reflected the animal’s preferences for  
different combinations of sequence length  
and final reward. Five-trial sequences had  
the highest value, as the monkey chose them most frequently. Saving sequences were freely determined by the animal; visual stimulation was  
constant across sequences. (b) Within-trial activity sorted according to sequence value (terciles). (c) Linear regression of activity on sequence  
value (t-test). Different value levels resulted from different sequence lengths as shown in a. (d) Multiple regression coefficients (β ± s.e.m.,  
Online Methods equation (6), t-test). (e) Activity in the imperative task, when saving was instructed, did not reflect sequence value.
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internal saving plans multiple trials in 
advance. We refer to such prospective activity 
as ‘planning activity’ because its occurrence 
preceded the end of a saving sequence by sev-
eral steps and because it referred to a future 
event that was self-determined by the animal 
and existed only internally at the time of saving. Planning activity 
in different neurons reflected different components of the monkey’s 
plan: the subjective value of the planned sequence (‘sequence value’) 
or the planned number of saving steps (‘sequence length’). Selection 
criteria for neurons with planning activity were task-related activity  
(P < 0.01, Wilcoxon test) and a significant regression coefficient for 
sequence value or sequence length (P < 0.05, multiple regression 
analysis; Online Methods equations (6)–(9)).

The neuron in Figure 2 had phasic trial-by-trial activity during 
the fixation period that was highest during sequences in which the 
animal would eventually spend on the fifth trial and lower for shorter 
or longer sequences (Fig. 2a). This activity profile resembled closely 
the distribution of sequence values derived from the animal’s choice 
preferences: for this interest rate, five-trial sequences had the highest 
value, as the animal chose them most frequently. Within trials, the 
prospective activity appeared during ocular fixation and continued 
beyond the cue period when a save-spend choice was made (Fig. 2b). 
Linear regression indicated a better relationship to sequence value  
(r2 = 0.54, P = 1.4 × 10−8, n = 40 trials; Fig. 2c) than to sequence 
length (r2 = 0.21, P = 0.003) or final juice amount (r2 = 0.07, P = 0.09).  

Multiple regression confirmed a relationship between neuronal activity  
and sequence value (P = 3.8 × 10−6; Online Methods equation (6)) 
and factored out other variables, including subjective values related 
to single trial choices (P > 0.33; Fig. 2d and Supplementary Fig. 3).  
The relationship between activity and sequence value disappeared 
in externally cued trials when saving was instructed (Fig. 2e;  
P = 0.072, multiple regression), despite comparable behavioral out-
come anticipation (regression of sequence length on reaction times 
P = 0.04; Supplementary Fig. 2d). Thus, during internally controlled 
step-by-step saving, the neuron showed prospective activity related 
to the subjective value of the monkey’s saving plan.

We found different forms of planning activity (Fig. 3). The neuron 
in Figure 3a resembled the one in Figure 2: it signaled sequence 
value across all trials (P = 0.04, n = 53 trials, multiple regression). In 
addition, it encoded spend values on single trials. To be engaged in 
planned saving, amygdala neurons should also encode the initial set-
ting of a plan, which may occur as early as the first trial of a sequence. 
This is exactly what we observed for the neuron in Figure 3b. This 
neuron encoded sequence value specifically on the first trial of  
each sequence but not on subsequent trials. In this neuron, planning  
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four single amygdala neurons. (a) Activity of this 
neuron, as in Figure 2, reflected sequence value 
across all trials. Right panel: regression β values 
obtained by fitting Online Methods equation (6) 
to neuronal activity. Sequence value P = 0.04.  
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fitting Online Methods equation (8) to neuronal 
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activity occurred early on, at trial start before fixation. Multiple  
regression confirmed a parametric value signal (P = 5.9 × 10−4,  
n = 42 trials), which differed distinctly from categorical coding of 
sequence onset previously found in amygdala neurons during an 
instructed task33. Accordingly, this neuron encoded the prospective  
valuation of an internal saving plan, well before the animal  
implemented the plan.

Sequence value neurons signaled the value of the animal’s plan but 
not the required steps for its implementation. By contrast, some neurons 
encoded the planned number of choice steps for a given sequence—
that is, the planned sequence length. The neuron in Figure 3c  
showed planning activity that predicted the sequence length the animal  
would eventually produce. It encoded sequence length through-
out all trials in a sequence (P = 0.0032, multiple regression, n = 41  
trials) with higher activity for shorter sequences. The neuron in 
Figure 3d also encoded sequence length, but it did so specifically 
on initial trials (P = 0.0049, multiple regression, n = 40 trials), with 
higher activity predicting longer sequences. Thus, sequence length 

neurons encoded the monkey’s internal plan in terms of the required 
number of saving steps.

Taken together, prospective activity in amygdala neurons  
encoded crucial components of the animal’s saving plan, including 
subjective value and objective length of the planned sequence. Such 
planning activities occurred either on initial trials or throughout 
whole saving sequences.

Planning activity in amygdala neurons: population data
Among 329 task-related neurons, 123 (37%; 66 and 57 from monkeys 
A and B, respectively) showed planning activity related to sequence 
value or sequence length, either throughout saving sequences or spe-
cifically on initial trials (Fig. 4a–d, Table 1, Supplementary Fig. 4 
and Supplementary Tables 1–3). The average activity of sequence 
value neurons followed closely the average subjective value profile, 
which was a non-monotonic function of sequence length (r2 = 0.91,  
P = 0.0001, linear regression; Fig. 4b). Analysis of trial-by-trial activity  
in these neurons confirmed this effect (P = 2.2 × 10−15, partial  
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correlation factoring out sequence length). By contrast, activity of 
sequence length neurons increased linearly with sequence length  
(r2 = 0.85, P = 0.0035, linear regression; Fig. 4d). Analysis of trial-by-
trial activity in these neurons confirmed this effect (P = 7.4 × 10−5; 
partial correlation factoring out sequence value). Supplementary ana
lysis confirmed a graded, parametric representation of sequence value 
or sequence length, rather than sharp tuning to specific sequences 
(Supplementary Fig. 5). A subset of neurons with planning activity 
was tested in the imperative task. In most of them (93%; 53 of 57 
tested neurons), planning activity was not found when saving was 
externally instructed (Fig. 4e,f). Thus, planning activity appeared to 
be largely specific for internally controlled saving behavior. Although 
planning activity often occurred without coding of other variables, 
some planning activities reflected additional task-related variables for 

guiding behavior on single trials (Supplementary Table 2), including 
previously reported trial-by-trial save-spend choices34.

Additional tests confirmed the statistical significance of plan-
ning activity. Compared to randomly shuffled data, the distribu-
tion of regression coefficients for planning activity was shifted 
toward higher positive and negative values (Fig. 4g; P = 1.8 × 10−27, 
Kolmogorov-Smirnov test). The observed proportion of planning 
activities exceeded that expected by chance (P < 10−14, binomial 
probability test); less than 5% of coefficients from shuffled data were 
significant. Using alternative regression models (see Online Methods; 
Supplementary Table 1), we found that the number of identified 
neurons with planning activity depended little on the specific model 
used and on the inclusion of different control covariates: the number 
of neurons with planning activity over several alternative models var-
ied from that in our main models by less than 5%, with percentages 
ranging from 35% to 41% (our original analysis resulted in 37%). 
Thus, planning variables explained unique variance components in 
neuronal activity relative to other variables.

Histological reconstructions verified that the recording sites were 
restricted to the amygdala and covered basolateral and centrome-
dial regions (Fig. 4h and Supplementary Fig. 6). Although neurons 
with planning activity were found in both basolateral and centro-
medial amygdala, they occurred significantly more frequently in the  
basolateral complex (χ2

1 = 7.86, P = 0.005, χ2 test; Fig. 4i). A similar 
clustering was not found for other types of activities, including those 
reflecting current-trial save-spend choices (P = 0.53, χ2 test). This 
anatomical trend could indicate greater importance of the basolateral 
amygdala for planned reward saving.

Figure 5  Adaptation dynamics of planning activity and reward proximity control. (a) Sequence-by-sequence adaptation in a single neuron encoding 
sequence length. Activity changes from spend to save trials (dashed lines) reflected changes in sequence length between successive sequences.  
Gray curves: sequence-averaged activity (thick line) and trial-by-trial activity (thin line). Green curve: sequence length. Blue curve: within-sequence 
reward proximity. Arrows: examples of activity changes scaling with sequence length changes. Colored boxes indicate sequences and corresponding 
lengths. Imp/s: impulses per second. (b) Linear regression of activity of the neuron in a on sequence length (left, n = 41 trials), difference in  
length between subsequent sequences (∆ sequence length, middle, n = 9 trials) and reward proximity (right, n = 41 trials). (c) Population data.  
Left: sequence value responses (n = 61); activity changes at sequence transitions reflected changes in sequence value (linear regression).  
Middle: sequence length responses (n = 55 responses); activity changes reflected changes in sequence length. Right: population activity (sequence 
value and sequence length responses, n = 116 responses) was unrelated to within-sequence reward proximity. (d) Regression β values for planning 
activity and reward proximity (n = 116 sequence value and sequence length responses, Kolmogorov-Smirnov test). (e) Behavioral versus neuronal 
adaptation in sequence value neurons. Top: with a new testing session, planning activity adapted readily to current interest rate, in step with behavior  
(r = 0.82, P = 1.7 × 10−4; both medians = 1, n = 61 responses). Bottom: neurons typically reached adaptation criterion within the first sequence 
(median = −3, implying adaption within 3 trials before end of first sequence; t60 = −10.17, P = 1.0 × 10−14, one-sample t-test). Statistical  
significance of regression coefficients was assessed using t-tests. Error bars: s.e.m.

Table 1  Number of neurons with planning activity
All trialsa First trialsb Combinedc

Sequence  
value  
(%)

Sequence  
length  
(%)

Sequence  
value  
(%)

Sequence  
length  
(%)

Sequence  
value or  

length (%)

Monkey A 27 (15) 21 (12)      20 (11) 15 (8) 66 (36)
Monkey B 19 (13) 24 (16) 10 (7) 18 (12) 57 (39)
Total 46 (14) 45 (14) 30 (9) 33 (10) 123 (37)
aNeurons encoding the planning variables sequence value or sequence length across all trials 
in a saving sequence. Percentages calculated with respect to 181 neurons in monkey A, 148 
neurons in monkey B and 329 task-related neurons in both animals. Percentages are refer-
enced to the number of neurons that were recorded because they were task-related—that is, 
responsive to events in the saving task. bNeurons encoding planning variables specifically on 
first saving trials. cNeurons encoding planning variables either across all trials or specifically 
on first saving trials. The number of neurons in this column can be smaller than the row sum 
as some neurons showed multiple significant effects.
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Adaptation dynamics of planning activity
If a neuron encodes components of the animal’s saving plan, its  
activity should update once a sequence is completed and begin 
to reflect properties of the subsequent sequence. Accordingly, we 
examined sequence transitions by comparing activity on spend trials 
and subsequent save trials (the last and first trials of two successive 
sequences). Figure 5a illustrates such transitions in a single neu-
ron with planning activity related to sequence length. Transitions 
were marked by activity changes that scaled with changes in planned 
sequence length. The neuron’s activity reflected planned sequence 
length within sequences and changes in planned sequence lengths 
at transitions (Fig. 5b). Activity was unrelated to within-sequence 
reward proximity (trials until reward). Sequence-by-sequence  
adaptation was also evident in population activity (Fig. 5c). Thus, 
planning activity adapted sequence by sequence to reflect changes 
in the monkey’s internal plan.

The observed sequence-by-sequence updating differs substantially 
from sustained activity increases typically associated with reward 
expectation20. In control analyses, population activity was unrelated 
to within-sequence reward proximity (Fig. 5c; r = 0.06, P = 0.1, linear 
regression), and few individual planning activities reflected reward 
proximity (12 of 123, 10%; supplementary regression with reward 
proximity covariate; Fig. 5d) or reward expectation indexed by reac-
tion times (11 of 123 responses, 9%; supplementary regression with 
reaction times covariate). Thus, most planning activities were insensi-
tive to trial-by-trial reward proximity and reward expectation.

Sequence value neurons were of particular interest, for they allowed 
us to test whether planning activity at the start of a testing session 
was in step with behavior as the animal adapted to the current interest  
rate. We defined criteria for behavioral and neuronal adaptation and 
plotted the number of steps to criterion. On average, as soon as the 
monkey chose its preferred sequence, activity began to accurately 

reflect the sequence’s current value (Fig. 5e). In most cases, planning 
activity reflected sequence value accurately the first time the pre-
ferred sequence was chosen. Thus, amygdala sequence value neurons 
adapted in step with the monkeys’ behavior.

Planning activity predicts performance, including errors
If planning activity in the amygdala participates in guiding the  
animals’ behavior, it should fluctuate with behavioral performance. 
We tested this hypothesis by regressing a measure of the monkey’s 
reward-saving efficiency on the standardized neuronal regression 
coefficients for sequence value and sequence length. We measured 
reward-saving efficiency as the accumulated sequence value per unit 
time, which indicated the extent to which the animals maximized 
subjective value. Across neuronal responses, stronger planning activ-
ity in a given testing session predicted more efficient reward saving 
(r = 0.39, P = 2.9 × 10−5, linear regression; Fig. 6a). This relationship 
remained highly significant after factoring out alternative variables, 
including interest rate, juice amount, error rate, number of trials and 
reward range (P < 0.001, partial correlation). Thus, the strength of 
planning activity in amygdala neurons explained variation in the 
monkeys’ saving efficiency.

We also tested whether planning activity tracked fluctuations in 
behavior as indexed by errors in trial-by-trial performance. In a popu-
lation analysis, we regressed neuronal activity on sequence value and 
sequence length separately for trials on which the monkeys committed 
errors—which implied failure to progress toward rewards—and for 
the immediately preceding and following non-error trials. Just before 
error trials, population activity exhibited a significant relationship to 
planning variables (Fig. 6b). However, this relationship declined when 
the animals committed an error and subsequently reappeared when 
they resumed saving toward their current goal. Thus, planning activ-
ity transiently declined on error trials, thereby reflecting performance 
fluctuations within a testing session.

DISCUSSION
We found prospective activity in amygdala neurons that reflected 
monkeys’ plans to save rewards toward specific goals several trials 
ahead. This activity predicted behavior not for individual trials but 
for whole choice sequences. In different neurons, it encoded the 
subjective value of the planned choice sequence (sequence value) 
or the objective number of planned saving steps (sequence length). 
Crucially, saving plans were not signaled by the environment but were 
self-defined and existed only internally. Accordingly, such activities 
constitute the neuronal building blocks of an internal behavioral plan. 
The occurrence of planning activity on initial trials and throughout  
saving sequences matches the timing of key cognitive processes 
thought to underlie goal-directed behavior1–3: the formation of a 
plan and its subsequent pursuit. In many neurons, the disappearance 
of prospective activity during instructed trials, activity updating in 
step with the monkey’s behavior, absence of reward proximity coding 
and relationship to performance provided further evidence for the 
encoding of an internal plan. By encoding the central components 
of a plan to obtain a future reward, prospective amygdala neurons 
may participate in guiding self-controlled behavior over several steps 
toward distant goals.

Functional significance of planning activity
Neurons in different brain structures encode reward values based on 
external cues and reinforcement history20,21,35–42. Although impor-
tant components of value coding, such activities by themselves cannot 
guide sequential behavior toward internal, distant goals. By contrast, 
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Figure 6  Relationship between amygdala planning activity and behavioral 
performance. (a) Relationship to saving efficiency. Stronger planning 
activity (sign-corrected regression β values, collapsed across responses 
encoding sequence value or sequence length across all trials, n = 116 
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value per unit time, normalized, linear regression). This effect was 
confirmed in a partial correlation analysis (P < 0.001, t-test) that factored 
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errors. Bars show regression β values (±s.e.m.) from a population analysis 
(combining sequence value and sequence length responses, n = 116) 
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toward their saving goal (t1453 = −2.69, *P < 0.01, dependent-samples 
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the presently observed sequence value signals seem ideally suited for 
this purpose: they reflected the value of the animal’s current plan, 
appeared several trials before a reward goal was obtained, reoccurred at 
each choice step until reward receipt and fluctuated with performance.  
Such value-related planning activity in the amygdala could serve in 
the guidance of behavior toward an internal goal and in the ongoing 
regulation of affective and cognitive processes during goal pursuit. 
The separate encoding of sequence value specifically on first saving 
trials could reflect the initial formation of a plan or a decision process 
that selects among alternative plans.

Prospective activity in a different category of neurons encoded the 
planned sequence length, thereby reflecting the means by which a 
distant reward would be obtained. These neurons did not specify a 
movement plan—which was precluded by the experimental design 
that used randomized cue positions—but an abstract, movement-
independent plan based on the number of choice steps. Encoding 
behavioral plans in such abstract form seems advantageous for goal-
directed behavior, as specific movement requirements are often not 
known in advance. These amygdala sequence length signals observed 
during economic, free choices may complement frontal lobe signals 
related to final target positions8 and categories of action sequences9 
found in instructed tasks. The observed encoding of sequence length 
specifically on first trials is consistent with the updating of an internal 
behavioral plan, analogous to updating of externally cued motor plans 
seen in frontal cortex10.

Planning activity and relation to other brain systems
In consistency with classical concepts43, we suggest that amygdala 
planning activity provides directive inputs to frontal lobe and basal 
ganglia structures involved in sequential, self-initiated behavior7–14. 
Amygdala sequence value neurons could send a value or goal signal  
to striatal and frontal areas to influence the initial selection of a 
plan and guide ongoing behavior toward an internal, distant reward 
goal. Via the same routes, amygdala sequence length neurons may 
participate in transforming abstract, value-based plans into con-
crete action. Amygdala reward-planning activity may also influence  
multistep learning processes involving frontal-striatal44 and parietal 
areas45 and may complement prospective activity observed in rodent 
hippocampus during spatial navigation46,47.

Existing evidence supports our interpretation that amygdala  
planning activity informs frontal-striatal systems during goal-directed 
behavior16,19,26,27. For example, in a recent study, value coding in 
primate orbitofrontal cortex during reward-based choice was dimin-
ished following amygdala lesions48. Notably, our data cannot deter-
mine whether planning activity originated locally within amygdala  
circuits or elsewhere. Resolving this important issue will require  
further experimentation.

Planning activity and amygdala function in affective state
Some amygdala neurons combined planning activity with additional 
task-relevant variables, including trial-specific values and reward 
expectation (Supplementary Fig. 7 and Supplementary Table 3). Via 
known amygdala outputs to basal forebrain, hypothalamus and brain 
stem23, such hybrid neurons could be involved in regulating motiva-
tion, attention and affective state21,33,40,49 on the basis of the animal’s 
current plan. By contrast, the ‘pure’ planning activity is unlikely to 
reflect these processes. First, planning activity often disappeared dur-
ing instructed behavior, despite comparable reward timing and antici-
pation. Second, most planning activities were unrelated to reward 
proximity and expectation, which seems incompatible with general 
functions in motivation or attention. Finally, the functionally different 

profiles of planning activity—encoding sequence value or sequence 
length, either throughout sequences or on initial trials—seem incon-
sistent with simple roles in reward expectation or arousal.

Thus, most planning activities failed to show standard meas-
ures of reward expectation and related state value, attention and 
arousal20,21,40, and they therefore appear to reflect the animal’s inter-
nal saving plan. Although pure planning activity seems unrelated to 
attention, its combined coding with single-trial values and reward 
expectation in hybrid neurons could serve to focus processing onto 
current plans, which may be important in reward-saving behavior, as 
suggested by psychological and economic theories1.

Amygdala planning activity at sequence start
In a previous study, amygdala neurons signaled the start of behavioral 
sequences during forced, multistep reward schedules33. Although we 
also found sequence onset responses in some neurons (17%), our 
typical planning activity failed to occur in forced, imperative trials 
and was largely restricted to free choices. Crucially, planning activity 
was based entirely on internally generated goals and associated saving 
plans, and the animals made their own choices rather than follow-
ing cue instructions. Planning activity also reflected parametrically 
the key variables sequence value or sequence length; a generalized, 
nonparametric response to sequence onset was factored out by multi-
ple regression. Further, in supplementary analyses, only few neurons 
(<5%) showed systematic trial-order dependent activity beyond first 
trials. Thus, although visually similar to activity in forced, multi-step 
reward schedules, our planning activity critically reflected the internal 
nature of the task.

Planning activity and theories of amygdala function
Current theories emphasize the amygdala’s capacity as a valuation 
structure to signal behavioral goals on the basis of external cues and 
past experience15–21. Our data extend these accounts by demonstrat-
ing that amygdala goal representations can reflect internally generated 
goals for distant, future rewards. This finding is difficult to reconcile 
with the influential view of the amygdala as an impulsive, stimulus-
bound system that signals immediate rewards in response to external 
cues50, a view often used to interpret amygdala dysfunction in addic-
tion and other disorders. By contrast, the amygdala neurons described 
here signaled the prospect of internally generated, future rewards 
that became available only after multistep planning. Such prospective 
activity typically disappeared during externally cued behavior, and its 
time course did not resemble simple reward expectation.

We propose an updated view of the amygdala that incorporates 
a planning function for internally generated, distant reward goals. 
This conceptual advance may open new avenues for understanding 
amygdala function in health and disease, including in addiction and 
other states with dysfunctional reward pursuit.

Conclusion
A basic principle underlying goal-directed behavior is the formation 
of an internal plan and its pursuit over successive steps. Our findings, 
experimentally focused on shorter timescales, demonstrate neuronal 
building blocks for these fundamental processes in the amygdala, 
although additional mechanisms are likely required for planned 
behavior over longer periods.

As a valuation system, the amygdala seems predisposed to  
provide the goals for internally planned behavior. However, we do  
not believe the amygdala is unique in encoding reward-based plans. 
Our experimental approach of combining neurophysiology with 
an internally controlled, sequential reward-planning task may help 
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uncover reward-based planning activity in other brain structures and 
perhaps other species.

Methods
Methods and any associated references are available in the online 
version of the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE METHODS
Neurophysiological recordings. All animal procedures conformed to US 
National Institutes of Health Guidelines and were approved by the Home Office 
of the UK. Experimental procedures for neurophysiological recordings from 
awake, behaving macaque monkeys have previously been described25,34,51. Two 
adult male rhesus monkeys (Macaca mulatta) weighing 9.2 and 12.0 kg par-
ticipated in the experiments. The number of animals used is typical for primate 
neurophysiology experiments. The animals had no history of participation in 
previous experiments. A head holder and a recording chamber were affixed to the 
skull under general anesthesia and aseptic conditions. We located the amygdala 
from bone marks on coronal and sagittal radiographs taken with a guide cannula 
and electrode inserted at a known coordinate in reference to the stereotaxically 
implanted chamber52. We recorded activity from single amygdala neurons from 
extracellular positions during task performance, using standard electrophysi-
ological techniques including online visualization and threshold discrimination 
of neuronal impulses on oscilloscopes. We aimed to record representative neu-
ronal samples from the dorsal, lateral and basal amygdala.

We sampled activity from about 700 amygdala neurons in exploratory tests 
with the reward-saving task. We recorded and saved the activity of neurons that 
appeared to respond to at least one task event during online inspection of several 
trials. This procedure resulted in a database of 329 neurons with task-related 
responses which we analyzed statistically. The number of neurons is similar to 
those reported in previous studies on primate amygdala21,25. We aimed to identify 
neurons that were generally task responsive, but we did not screen selectively 
for planning activity. Accordingly, statements about the proportion of amygdala 
neurons with planning activity refer to the proportion of neurons that we found 
to be related to the behavioral events in the saving task.

After completion of data collection, recording sites were marked with small 
electrolytic lesions (15–20 µA, 20–60 s). The animals received an overdose of 
pentobarbital sodium (90 mg/kg i.v.) and were perfused with 4% paraformalde-
hyde in 0.1 M phosphate buffer through the left ventricle of the heart. Recording 
positions were reconstructed from 50-µm-thick, stereotaxically oriented coronal 
brain sections stained with cresyl violet. The histological reconstructions vali-
dated also the previously radiographically assessed anatomical position of the 
amygdala in agreement with earlier reports25,52. For Figure 4h,i, we collapsed 
recording sites from both monkeys spanning 3 mm in the anterior-posterior 
dimension onto the same coronal section.

Behavioral task. On each trial (Fig. 1a), the monkey chose to either save  
the liquid reward that was available on that trial, which increased its mag-
nitude by a variable ‘interest rate’, or spend the saved reward for immediate  
consumption. (The term ‘interest rate’ provides an intuitive description 
of the variable that governed increases in reward across save choices; this  
should not imply exact comparability with human economic saving.) The 
increase of reward magnitude over successive save choices was determined  
by the geometric series

x b qn
i

n
i=

=

−

∑
0

1

with xn as reward magnitude on trial n, b as base rate of reward magnitude and 
q as interest rate, resulting in geometric increases for higher interest rates. To 
provide an example of how rewards were calculated, consider a series of two 
successive save choices by the monkey with a base rate of reward b = 0.11 and 
interest rate q = 1.5. On the second trial of the choice sequence, after the first 
save choice, reward R = 0.11 × (1 + 1.5) = 0.275 ml. On the third trial, after two 
successive save choices, reward R = 0.11 × (1 + 1.5 + 1.52) = 0.523 ml. Monkeys 
were free to produce saving sequences of various lengths; that is, saving behavior 
was self-determined, after one required save choice per sequence. We found that 
in early stages of task training the animals were unable to drink more than 8 ml 
on a single trial. Accordingly, for the high interest rate condition (Fig. 1b, top) 
we adjusted the reward magnitude so that reward stagnated at 8 ml after seven 
consecutive save trials. However, the animals were still free to produce longer 
saving sequences; we did not impose an upper limit on the sequence length. By 
the time of neuronal recordings, the animals only generated saving sequences 
that resulted in reward amounts that they could comfortably drink.

(1)(1)

The animals initiated trials by placing their hand on an immobile, touch-
sensitive key. The trial then started with an ocular fixation spot of 1.3° of visual 
angle at the center of the computer monitor. Animals were required to keep 
their gaze on the fixation spot at stimulus center within 2–4°. Eye position was 
monitored using an infrared eye tracking system at 125 Hz (ETL200; ISCAN). 
At 1,500 ms plus a mean of 500 ms (truncated exponential distribution) after 
fixation spot onset, the two save and spend visual stimuli of 7.0° appeared on 
the left and right side of the computer monitor (pseudorandomized). The cues 
were approximately similar in luminance. In different blocks of typically 40–100 
consecutive trials, different stimuli were used as save cues to indicate different 
interest rates. Animals indicated their choice with a saccade as soon as the visual 
cues appeared. The chosen stimulus was then replaced by a peripheral fixation 
spot of 7.0° of visual angle. After a delay period of 1,500 ms, a color change of the 
peripheral fixation spot served as a ‘Go’ signal for the monkey to release the touch 
key. The release of the touch key was followed by the delivery of the reinforcer 
(an auditory or visual cue on save trials or a drop of juice reward on spend trials). 
For most recording sessions, we used an auditory cue as secondary reinforcer on 
save trials, which signaled successful trial completion without providing infor-
mation about saved reward amount. Thus, animals had to track internally the 
accumulated reward amounts during saving behavior. Failures of key touch or 
fixation breaks were considered errors and resulted in trial cancellation. More 
than three sequential errors led to a pause in behavioral testing. Accumulated 
saved rewards were retained across error trials. The animals were overtrained 
by the time of neuronal recording and showed consistent, meaningful saving 
behavior for different interest rates without further signs of learning (Fig. 1b 
and Supplementary Fig. 1a,b).

Each neuron was typically tested with one to two different interest rates. The 
duration required for testing neurons with statistically sufficient numbers of  
trials in both free choice and imperative tasks usually precluded using more  
than two interest rates.

Task training. We trained each animal for 3–4 months before neuronal record-
ings with the different visual stimuli and the different interest rates (300–400 
trials/d, 5 d/week). Initially, the animals learned that responding to visual cues 
led to reward delivery. We then introduced two different visual cues and taught 
the animals that choice of one of the cues led to reward if the other cue had been 
chosen immediately before. This helped to train the animals to alternate choices 
between save and spend cues. We then introduced interest rates in the form of 
different save cues and the monkeys learned the underlying reward contingen-
cies by sampling different sequence lengths. Thus, we did not shape the animals 
behavior toward producing different sequence lengths at different interest rates. 
In parallel, we introduced imperative trials using the same cues with variable 
sequence lengths, with a small visual stimulus indicating the correct choice on 
each trial. We proceeded to neuronal recordings when performance in control 
tasks (see below) indicated that the animals were adapting their choices to interest 
rate in a meaningful and flexible manner.

Rewards. A computer-controlled solenoid valve delivered juice reward from a 
spout in front of the animal’s mouth, with a valve opening time of 100 ms cor-
responding to 0.38 ml. For monkey A, the base rate of reward magnitude, b from 
Online Methods equation (1), was set to 0.11 ml for all sessions; for monkey B, the 
base rate was set to 0.11 ml for half of the sessions and 0.13 ml for the other half 
of the sessions. The animal’s tongue interrupted an infrared light beam below the 
spout. An optical sensor (STM Sensor Technology) monitored licking behavior 
with 0.5-ms resolution.

Imperative control task. In this control task, saving behavior was not self- 
controlled by the animals but was externally determined. A small visual cue was 
presented next to either the save or the spend cue to indicate the correct choice 
on each trial. The trial was otherwise identical to a free choice trial. We matched 
the ratio of save to spend trials between imperative and free choice task for a given 
monkey and interest rate. This made it possible for the monkeys to anticipate 
final saving outcomes, as confirmed by analysis of behavioral reaction times 
(Supplementary Fig. 2d).

Control task with uncued changes in interest rate. To test the extent to which the 
monkeys adapted their saving behavior to changes in the interest rate even when 
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interest rates changed without notification, we performed, in behavioral testing 
sessions, a variant of the free choice saving task in which the interest rate varied 
without associated changes in the visual save cue (Fig. 1c and Supplementary 
Fig. 1e). In this control test, we introduced a new, unfamiliar save cue on each 
day and varied the interest rate without notification in blocks of 40–100 trials that 
were randomly interleaved. The save cue was fixed throughout a testing session 
and the animal had to keep track of the current interest rate.

Control task with fixed reward. To test whether the monkeys kept track of  
the amount of reward they had accumulated through consecutive save choices,  
we offered them, on randomly interspersed trials, a choice between the  
accumulated reward and fixed amounts indicated by pre-trained visual cues 
(Supplementary Fig. 1f).

Description of saving behavior. We constructed, separately for different interest 
rates, distributions of the relative frequencies with which each animal produced 
saving sequences of specified length. Figure 1b shows these frequency distri-
butions averaged over animals for low (q = 0.7), medium (q = 1.5) and high 
(q = 2.0) interest rates. Figure 1c shows weighted means of these distributions 
pooled over animals. For calculation of these weighted means, each relative choice 
frequency was weighted by its corresponding sequence length. Supplementary 
Figure 1a shows distributions separately for the two animals and for various 
interest rates.

Definition of subjective values. To model the animals’ saving behavior trial-
by-trial, we derived estimates of the subjective values that the animals likely 
associated with saving sequences and save/spend choice options. For unbiased 
estimates, we used one half of the choice data within each monkey and interest 
rate to estimate subjective values and the other half for analysis. For each inter-
est rate, we measured the relative spending frequency at each step in a saving 
sequence (Fig. 1b, black) and multiplied it by the objective reward magnitude 
that would result from spending on that trial (Fig. 1b, green curve), to account for 
differences in reward magnitude between interest rate conditions. This measure 
constituted the subjective value of spending on each trial (‘spend value’; Fig. 1b, 
magenta curve). Thus, the subjective value for spending, SVspend, at a given 
point i in a saving sequence was defined as

SVspendi i iP M=

where Pi is the probability with which the monkey produced a saving sequence of 
length i and Mi is the objective reward magnitude in milliliters of juice that would 
result from spending at point i of the sequence length given the current interest 
rate. The spend value actually realized in a saving sequence constituted the value 
of the current sequence, which we labeled ‘sequence value’. Magenta curves in 
Figure 1b show examples of subjective value functions for different interest rates. 
We defined the ‘save value’ for each trial as the average spend value that the animal 
could obtain in all future trials of that sequence. Accordingly, the save value for a 
given trial i not only depended on the spend value of the immediately following 
trial, SVspendi+1, but also on the spend values of other future trials of the current 
sequence (SVspendi+2, SVspendi+3, …) Thus, the subjective value SVsave for 
saving at a given point n in a save sequence was defined as

SVsave SVspendn
i n

m
im n

=
− = +

∑1

1

with m defining the upper limit of the save sequence (given by the maximal 
observed sequence length for the monkey). Thus, spend value and save value 
reflected the monkeys’ trial-by-trial valuations, whereas sequence value consti-
tuted the value of the current saving sequence.

Logistic regression analysis of choice data. To model the monkeys’ trial-by-trial 
choices, we used a multiple logistic regression analysis with the following general 
linear model (GLM), GLM-1:

y = + + +
+ +
β β β β

β β
0 1 2 3

4 5

SVspend SVsave Interest
Cueposition Juice d/ aay Monkey+ +β ε6

(2)(2)

(3)(3)

(4)(4)

with y as trial-by-trial save-spend choice (1 indicating save choice and 0 indicat-
ing spend choice), SVspend and SVsave as the subjective value of spending or 
saving on the current trial, interest as the current interest rate, cue position as the 
left-right position of the save cue on the current trial, juice/day as the amount of 
liquid already consumed on that day, monkey as animal identity, β1 to β6 as the 
corresponding slope parameter estimates, β0 as constant and ε as residual.

Linear regression analysis of reaction times and licking durations. As a meas-
ure of the animals’ trial-by-trial reward expectation, we analyzed the latencies 
with which the monkeys released the touch key at the end of the trial to initiate 
reinforcer delivery. We adopted this approach on the basis of previous findings53 
and preliminary analyses that indicated that touch key release latencies rather 
than saccade latencies reflected upcoming reward magnitudes. Reaction times 
were z-normalized separately for each animal within each experimental session 
by subtracting the session mean and dividing by the session s.d. To test whether 
sequence value influenced the animals’ reaction times during saving, we used the 
following multiple regression model, GLM-2:

y = + + +
+ + +
β β β β

β β β
0 1 2 3

4 5 6

Choice SVspend SVsave
SVfinal Interest Juiice day Monkey +/ + β ε7

with y as reaction time (key release latency), Choice as save-spend choice, SVfinal 
as sequence value and all other regressors as defined for equation (4).

Analysis of neuronal data. We counted neuronal impulses in each neuron on 
correct trials relative to different task events with time windows that were fixed 
across neurons: 1,000 ms before fixation spot (Pre-fixation), 1,775 ms after fixa-
tion spot but before cues (Fixation, starting 25 ms after fixation spot onset),  
300 ms after cues (Cue, starting 20 ms after cue onset), 1,500 ms post-choice delay 
(Delay, starting 25 ms after the animal had indicated its choice) and 500 ms during 
the reward outcome period (Outcome, starting 50 ms after reinforcer onset). Our 
analysis followed established approaches to analyzing neuronal data in reward 
structures with heterogeneous populations of neurons35–37,54, as follows.

We first identified task-related responses in individual neurons and then used 
multiple regression analysis to test for different forms of planning activity while 
controlling for the most important behaviorally relevant covariates. We identi-
fied task-related responses by comparing activity in the Fixation, Cue, Delay 
and Outcome periods to a control period (Pre-fixation) using the Wilcoxon test  
(P < 0.01, Bonferroni-corrected for multiple comparisons). A neuron was 
included as task-related if its activity in at least one task period was significantly 
different from that in the control period. Because the Pre-fixation period served 
as control period, we did not select for task-relatedness in this period but included 
all neurons with observed impulses in the analysis. We chose the pre-fixation 
period as control period because it was the earliest period at the start of a trial in 
which no sensory stimuli were presented.

We next used multiple regression analysis to assess relationships among neuro-
nal activity and planning variables. The use of multiple regression was considered 
appropriate for the present data after testing assumptions of randomness of resid-
uals, constancy of variance and normality of error terms. Statistical significance 
of regression coefficients was determined using t-test with P < 0.05 as criterion 
and was supported by a bootstrap as described in the Results. All tests performed 
were two-sided. Each neuronal response was tested with the following multiple 
regression models; GLM-4a and GLM-4b, respectively:

     

y = + + +
+ + +
β β β β

β β β
0 1 2 3

4 5 6

Choice SVspend SVsave
SVfinal Left/right CCueposition + ε

    

y = + + +
+ + +
β β β β

β β
0 1 2 3

4 5

Choice SVspend SVsave
SeqLength Left/right ββ ε6Cueposition +

with y as trial-by-trial neuronal impulse rate, SVfinal as sequence value, SeqLength 
as sequence length, left/right as an indicator function denoting whether the mon-
key made a saccade to the left or to the right, and all other variables as defined 
above for GLM-2. GLM-4 was used to identify neurons whose activity reflected 
sequence value or sequence length across all trials within saving sequences. 
Coefficients for all regressors within a model were estimated simultaneously. 

(5)(5)

(6)(6)

(7)(7)
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Thus, significant regressors for sequence value or sequence length would indi-
cate that a significant portion of the variation in neuronal impulse rate could be 
uniquely attributed to these variables.

The following models were used to test specifically for relationships between 
neuronal activity and planning activity on first saving trials; GLM-5a and GLM5b, 
respectively:

y = + + +
+ + ×
β β β β

β β
0 1 2 3

4 5

SVspend SVsave SVfinal
FirstSave SVfinal FirrstSave Cueposition+ +β ε6

y = + + +
+ +
β β β β

β β
0 1 2 3

4 5

SVspend SVsave SeqLength
FirstSave SeqLengthh FirstSave Cueposition× + +β ε6

with y as the trial-by-trial neuronal impulse rate on all save trials (excluding spend 
trials), FirstSave as an indicator function denoting the first trial within each sav-
ing sequence, SVfinal × FirstSave as an interaction term to model sequence value 
coding specifically on first trials, and SeqLength × FirstSave as an interaction term 
to model sequence length coding specifically on first trials. To limit the number of 
regressors in the model, we only considered save trials for this analysis; therefore, 
GLM-5 did not include regressors for the trial-specific save-spend choice (which 
was constant). We also did not include a regressor for the current-trial left-right 
action, as few neurons (<5%) showed effects related to action choice in an initial 
exploratory analysis.

We analyzed all task-related responses with the GLMs described in  
equations (6)–(9) to test for significance of the regression coefficient related 
to planning activity in each model. A task-related response was categorized as  
planning activity if it had a significant regressor for sequence value or sequence 
length in GLM-4 or in GLM-5. In cases where both sequence value and sequence 
length regressors were significant, we calculated coefficients of partial determina-
tion (CPDs)—a measure of the variance explained by one regressor in a multiple 
regression model—and assigned the response to the category with the higher 
CPD. CPDs were calculated as CPD(Xi) = [SSE(X−i) − SSE(X−i, Xi)]/SSE(X−i), with 
SSE(X) indicating the sum of squared errors in a regression model that includes a 
set of regressors Xi, and X−i indicating the set of regressors that includes all regres-
sors except Xi. For most planning activities (94.6%), this approach allowed clear 
categorization as either sequence value coding or sequence length coding. Some 
remaining responses with equal CPDs (5.4%) were categorized as sequence value 
coding, as this was our a priori hypothesis for a reward structure. Exclusion of 
these few ambiguous responses did not alter any results or conclusions.

We followed standard procedures55,56 to confirm that our regression  
approach was not compromised by multicollinearity. First, we confirmed that 
our results were robust to variations in statistical modeling when predictor vari-
ables were added or deleted (see below). Second, inspection of correlation matri-
ces revealed that correlations between variables were within acceptable ranges  
(for example, the average correlation between SVsave and SVspend was −0.178). 
Third, we confirmed that variance inflation factors (VIFs) for the behavioral 
GLMs were <3 and thus well below the cutoff recommended in statistical  
literature56. For all neuronal GLMs, VIFs were equally low (mean = 2.48 ± 0.13, 
s.e.m.) and 95% of VIFs were <3.44. VIFs were calculated separately within each 
neuronal testing session.

We evaluated the extent to which our key findings were robust to variations  
in statistical modeling using alternative analysis windows and regression  
models. Results for the fixation period were robust (<5% change in number 
of significant responses) to changes in analysis window (200, 250 or 350 ms  
offset after fixation or restricting analysis window to 350 ms offset until 1,500 ms 
after fixation). Further, compared to 123 neurons with planning activity obtained 
in our main regression models, we obtained the following numbers in a series 
of alternative models: 130 neurons when GLM-4 and GLM-5 were combined  
into one model, 125 neurons when including reward proximity as a covariate,  
134 neurons when including reaction time as a covariate, 128 neurons  
when including an autoregressive term of neuronal impulse rate as covariate, 
120 neurons when choice probability was included as covariate and 115 neu-
rons when using single linear regression models. Finally, a stepwise variable  
selection55 procedure with all variables in equations (6)–(9) included  
in the starting set identified 135 neurons with planning activity (Supplementary 
Table 1).

(8)(8)

(9)(9)

Normalization of population activity. We subtracted from the measured impulse 
rate in a given task period the mean impulse rate of the control period and divided 
by the s.d. of the control period (z-score normalization). Next, we distinguished 
neurons that showed a positive relationship to sequence value or sequence  
length and those with a negative relationship, as based on the sign of the regres-
sion coefficient, and sign-corrected responses with a negative relationship.

Normalization of regression coefficients. Standardized regression coefficients 
were defined as xi(si/sy), xi being the raw slope coefficient for regressor i, and si and 
sy the s.d. of independent variable i and the dependent variable, respectively.

Analysis of neuronal adaptation dynamics. To examine behavioral and neuro-
nal adaptation to the current interest rate at the start of a new testing session, we 
defined a criterion for behavioral adaptation as the number of sequences that the 
animal produced before it produced its ‘preferred’ sequence for the first time. The 
preferred sequence was the one with the highest sequence value given the current 
interest rate. Our rationale was that each interest rate condition was characterized 
by a subjective value function that depended on the animal’s choice preferences. 
The animals would then adapt to the current interest rate by changing their behav-
ior according to this value function, and corresponding changes might be seen in 
sequence value neurons. To examine neuronal adaptation in sequence value neu-
rons, a criterion for neuronal adaptation was defined as the number of trials before 
the neuronal response to the preferred sequence was within 0.5 s.d. of the neuron’s 
mean response to that sequence. (Very similar results were obtained if this criterion 
was adjusted to 1 or 1.5 s.d.) For all sequence value responses, the distribution of 
this neuronal adaptation criterion over sessions is plotted in Figure 5e (top panel; 
magenta data points represent means over responses). The bottom panel in Figure 5e  
shows the distribution of the difference between this criterion and the length of 
the preferred sequence. Thus, negative values on the x axis in Figure 5e, bottom 
panel, indicate that the neuronal adaptation criterion was achieved during the first 
preferred sequence that the animal produced in that session.

Analysis across neurons. For Figure 6a, we plotted the sign-corrected, standard-
ized regression β values for each neuronal response against a measure of saving 
efficiency, defined as the cumulative sequence value that the animal obtained 
in the session in which the neuron was recorded, normalized to the number of 
trials in that session. For the error analysis shown in Figure 6b, we selected trials  
immediately before the animal committed an error within a saving sequence 
(‘Pre-error’), the error trial itself (‘Error’) and the subsequent trial (‘Post-error’). 
Errors occurred when the animal failed to complete a trial due to a fixation error 
or release of touch key. We included trials on which an error occurred following 
the trial period in which the neuron exhibited planning activity. As this analysis 
matched the number of error and non-error trials, any observed effect could not 
be explained by lower statistical power for error trials. The regression coefficients 
shown in Figure 6b were obtained by performing single linear regressions of 
normalized population activity on sequence value or sequence length, separately 
for pre-error, error and post-error trials.

Analysis of neuronal tuning to sequence length. For the analysis shown in 
Supplementary Figure 5, we calculated a breadth of tuning metric that has pre-
viously been used to examine sensory tuning functions57. We determined the 
relative magnitude of the neuronal response to a specific sequence length (defined 
as the mean response to that sequence length, expressed as the proportion of the 
summed mean responses to all sequences). On the basis of these relative magni-
tudes, the breadth of tuning metric was calculated as

H K p p
i

n
i i= −

=
∑
1

log

with H as breadth of tuning, K as scaling constant (set so that H = 1.0 if the  
neuron had equal responses to all sequence lengths in the set of n sequence 
lengths) and pi as the response to a given sequence length, expressed as the  
proportion of the summed response to all sequences. The set of sequences  
considered for each neuron was determined by the range of sequences that the 
animal produced while the neuron was recorded. The metric ranges from 0 to 1,  

(10)(10)
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with 0 indicating total specificity to one sequence length and 1 indicating  
equal responses to all sequences.

A Supplementary Methods Checklist is available.
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