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Introduction

	 I  am standing in front of a drink-dispensing ma-
chine in Japan that seems to allow me to buy six dif-
ferent types of drinks, but I cannot read the words. I 
have a low expectation that pressing a particular button 
will deliver my preferred blackcurrant juice (a chance 
of one in six). So I just press the second button from 
the right, and then a blue can appears with a familiar 
logo that happens to be exactly the drink I want. That 
is a pleasant surprise, better than expected. What would 
I do the next time I want the same blackcurrant juice 
from the machine? Of course, press the second button 
from the right. Thus, my surprise directs my behavior to 
a specific button. I have learned something, and I will 
keep pressing the same button as long as the same can 
comes out. However, a couple of weeks later, I press 
that same button again, but another, less preferred can 
appears. Unpleasant surprise, somebody must have 
filled the dispenser differently. Where is my preferred 
can? I press another couple of buttons until my blue can 
comes out. And of course I will press that button again 
the next time I want that blackcurrant juice, and hope-
fully all will go well. 
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Reward prediction errors consist of the differences be-
tween received and predicted rewards. They are crucial 
for basic forms of learning about rewards and make 
us strive for more rewards—an evolutionary beneficial 
trait. Most dopamine neurons in the midbrain of hu-
mans, monkeys, and rodents signal a reward prediction 
error; they are activated by more reward than predicted 
(positive prediction error), remain at baseline activity 
for fully predicted rewards, and show depressed activity 
with less reward than predicted (negative prediction er-
ror). The dopamine signal increases nonlinearly with re-
ward value and codes formal economic utility. Drugs of 
addiction generate, hijack, and amplify the dopamine 
reward signal and induce exaggerated, uncontrolled 
dopamine effects on neuronal plasticity. The striatum, 
amygdala, and frontal cortex also show reward predic-
tion error coding, but only in subpopulations of neu-
rons. Thus, the important concept of reward prediction 
errors is implemented in neuronal hardware.            
© 2016, AICH – Servier Research Group	 Dialogues Clin Neurosci. 2016;18:23-32.
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	 What happened? The first button press delivered my 
preferred can. This pleasant surprise is what we call a 
positive reward prediction error. “Error” refers to the 
difference between the can that came out and the low 
expectation of getting exactly that one, irrespective of 
whether I made an error or something else went wrong. 
“Reward” is any object or stimulus that I like and of 
which I want more. “Reward prediction error” then 
means the difference between the reward I get and the 
reward that was predicted. Numerically, the prediction 
error on my first press was 1 minus 1/6, the difference 
between what I got and what I reasonably expected. 
Once I get the same can again and again for the same 
button press, I get no more surprises; there is no predic-
tion error, I don’t change my behavior, and thus I learn 
nothing more about these buttons. But what about the 
wrong can coming out 2 weeks later? I had the firm ex-
pectation of my preferred blackcurrant juice but, un-
pleasant surprise, the can that came out was not the one 
I preferred. I experienced a negative prediction error, 
the difference between the nonpreferred, lower val-
ued can and the expected preferred can. At the end of 
the exercise, I have learned where to get my preferred 
blackcurrant juice, and the prediction errors helped me 
to learn where to find it. Even if all this sounds arcane, 
it is the formal description of my Japanese experience.
	 This is what this article is about: how our brains pro-
cess reward prediction errors to help us get our drinks, 
and all the other rewards and good things in life.

Reward prediction errors for learning

Rewards produce learning. Pavlov’s dog hears a bell, sees 
a sausage, and salivates. If done often enough, the dog 
will salivate merely on hearing the bell.1 We say that the 
bell predicts the sausage, and that is why the dog sali-
vates. This type of learning occurs automatically, without 
the dog doing anything except being awake. Operant 
conditioning, another basic form of learning, requires 
the animal’s participation. Thorndike’s cat runs around 
a cage until it happens to press a latch and suddenly gets 
out and can eat.2 The food is great, and the cat presses 
again, and again. Operant learning requires the subject’s 
own action, otherwise no reward will come and no learn-
ing will occur. Pavlovian and operant learning constitute 
the building blocks for behavioral reactions to rewards.
	 Both learning forms involve prediction errors.3 To 
understand prediction errors, we distinguish between 

a prediction about a future reward, or no prediction 
(which is also a prediction, but a poorly defined one), 
and the subsequent reward. Then we compare the re-
ward with the prediction; the reward is either better 
than, equal to, or worse than than its prediction. The 
future behavior will change depending on the experi-
enced difference between the reward and its prediction, 
the prediction error (Figure 1). If the reward is differ-
ent from its prediction, a prediction error exists, and we 
should update the prediction and change our behavior 
(red). Specifically, if the reward is better than predicted 
(positive prediction error), which is what we all want, 
the prediction becomes better and we will do more of 
the behavior that resulted in that reward. If the reward 
is worse than predicted (negative prediction error), 
which nobody wants, the prediction becomes worse and 
we will avoid this the next time around. In both cases, 
our prediction and behavior changes; we are learning. 
By contrast, if the reward is exactly as predicted (blue), 
there is no prediction error, and we keep our prediction 
and behavior unchanged; we learn nothing. The intu-
ition behind prediction error learning is that we often 
learn by making mistakes. Although mistakes are usu-
ally poorly regarded, they nevertheless help us to get a 
task right at the end and obtain a reward. If no further 
error occurs, the behavior will not change until the next 
error. This applies to learning for obtaining rewards as 
well as it does for learning movements. 
	 The whole learning mechanism works because we 
want positive prediction errors and hate negative pre-
diction errors. This is apparently a mechanism built in 
by evolution that pushes us to always want more and 
never want less. This is what drives life and evolution, 
and makes us buy a bigger car when our neighbors 

24

Use prediction

Error

Receive
outcome

Keep
prediction
unchangedReward =

prediction

Reward ≠
prediction

Update
prediction

Figure 1. �Scheme of learning by prediction error. Red: a prediction er-
ror exists when the reward differs from its prediction. Blue: 
no error exists when the outcome matches the prediction, 
and the behavior remains unchanged.



Dopamine reward prediction error - Schultz	 Dialogues in Clinical Neuroscience - Vol 18 . No. 1 . 2016

muscle up on their cars (the neighbors’ average car size 
serves as a reference that is equivalent to a prediction). 
Even a buddhist, who hates wanting and craving for 
material goods and unattainable goals, wants more hap-
piness rather than less. Thus, the study of reward predic-
tion errors touches the fundamental conditions of life.

Reward is in the brain

The study of reward processing in the brain started 
when Olds and Milner4 introduced electrodes into the 
brains of rats and subjected them to small electric cur-
rents when they pressed a lever. Such currents elicit 
action potentials in thousands of neurons within a mil-
limeter around the electrode. Olds and Milner placed 
electrodes in different brain regions. In some of these 
regions they found a remarkable effect. The rats pressed 
more to get more electric shocks to their brains. The an-
imals were so fascinated by the lever pressing that they 
forgot to eat and drink for a while. Not even a female 
rat could distract a male. It seemed that there was noth-
ing better than this brain stimulation. The surge of ac-
tion potentials in neurons incited the animals again and 
again to press the lever, a typical manifestation of the 
function of rewards in learning and approach behavior. 
Olds and Milner had found a physical correlate for re-
ward in the brain!
	 Subsequent studies showed that about half of the ef-
fective locations for electrical self-stimulation are con-
nected with dopamine neurons.5 Dopamine neurons are 
located in the midbrain, just behind the mouth, between 
the ears, about a million in humans, 200 000 in monkeys, 
and 20 000 in rats. They extend their axons several mil-
limeters into the striatum, frontal cortex, amygdala, and 
several other brain regions. The self-stimulation data 
demonstrate that the action potentials of dopamine 
neurons induce learning and approach behavior, thus 
linking brain function in a causal way to behavior.
	 But do dopamine neurons generate action potentials 
when a reward is encountered, without being stimulat-
ed by electric currents? The answer is yes.6 Showing a 
human, a monkey, or a rat money, food, or liquid makes 
the large majority of their dopamine neurons produce 
similar action potentials to those that occur during 
electrical self-stimulation. The higher the reward, the 
stronger the dopamine response. A closer look reveals 
that the dopamine neurons not only respond when the 
animal receives a reward but also when a stimulus, such 

as a light, picture, or sound predicts a reward. Such 
reward-predicting stimuli are conditioned rewards and 
have similar effects on learning and approach behavior 
to real rewards. Dopamine neurons treat reward pre-
dictors and real rewards in a similar way, as events that 
are valuable for the individual. In addition, predictive 
stimuli allow animals to plan ahead and make informed 
decisions. Thus, in signaling both rewards and reward-
predicting stimuli, dopamine neurons provide informa-
tion about past and future rewards that is helpful for 
learning and decision-making.

Reward prediction errors in dopamine 
neurons

However, the dopamine response shows something 
else. The response to the reward itself disappears when 
the reward is predicted. But if more than the predicted 
reward occurs, the dopamine neurons show stronger 
responses. By contrast, their activity decreases if no, 
or less than predicted, reward occurs. The dopamine 
response thus reflects a reward prediction error and 
can be described by the simple difference between ob-
tained and predicted reward (Figure 2). When we look 
at the time of the reward, more reward than predicted 
induces a positive dopamine response (excitation or 
activation, top), as much reward as expected induces 
no response (middle), and less than predicted reward 
leads to a negative response (depression of activity, 
bottom).7,8 These responses exist not only in monkeys, 
but are also found in dopamine neurons in humans9 
and rodents.10,11 Thus, dopamine neurons don’t just re-
spond to any old reward: they respond only to rewards 
that differ from their prediction. But that’s not all. The 
dopamine response is transferred to the next preced-
ing reward-predicting stimulus, and ultimately to the 
first predictive stimulus (Figure 3A).7,12 The longer the 
time between the first stimulus and the final reward, 
the smaller the dopamine response, as subjective re-
ward value becomes lower with greater delays, a phe-
nomenon known as temporal discounting; dopamine 
responses decrease in specific temporal discounting 
tests.13 The response to the reward-predicting stimu-
lus itself depends on the prediction of that stimulus, in 
the same way as the response to the reward. Thus, do-
pamine neurons respond to reward-predicting stimuli 
in the same way as to rewards, only with slightly less 
intensity, which allows them to use predictive informa-
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tion for teaching even earlier stimuli and actions. In 
this way, dopamine signals can be useful for learning 
long chains of events. Processing of prediction errors 
rather than full information about an environmental 
event saves neuronal information processing14 and, in 
the case of rewards, excites neurons with larger-than-
predicted rewards.
	 The dopamine reward prediction error response 
occurs pretty much in the way used in the Rescorla-
Wagner model3 that conceptualizes reward learning 
by prediction errors. In addition, the dopamine pre-
diction error signal with reward-predicting stimuli 
corresponds well to the teaching term of temporal 
difference (TD) learning, a derivative of the Rescor-
la-Wagner model.15 Indeed, dopamine responses in 
simple and complex tasks correlate very well with for-
mal TD models (Figure 3B).8,16 The existence of such 
neuronal error signals suggests that some brain pro-
cesses operate on the principle of error learning. The 
dopamine error signal could be a teaching signal that 
affects neuronal plasticity in brain structures that are 
involved in reward learning, including the striatum, 
frontal cortex, and amygdala. The error signal serves 
also an important function in economic decisions be-
cause it helps to update the value signals for the differ-
ent choice options.

Multiple components in dopamine responses

If we look closely, the form of the dopamine response 
can be quite tricky, not unlike that of other neuronal 
responses in the brain. With careful analysis,17 or when 
demanding stimuli require extended processing time,18 
two response components become visible (Figure 4). 
An initial, unselective response component registers 
any environmental object that occurs in the environ-
ment, including a reward. This salience response oc-
curs with all kinds of stimuli, including punishers and 

neutral stimuli, and seems to simply alert the neurons 
of possible rewards in the environment. It subsides in 
a few tens to hundreds of milliseconds when the neu-
rons identify the object and its reward value properly. 
Thus, the neurons code salience only in a transitory 
manner. Then a second, selective response component 
becomes identifiable, which reflects only the reward 
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information (as reward prediction error). From this 
point on, the dopamine neurons represent only reward 
information.
	 With these two components, the dopamine neurons 
start processing the encountered stimulus or object 
before they even know whether it is a reward, which 
gives them precious time to prepare for a potential be-
havioral reaction; the preparation can be cancelled if 
the object turns out not to be a reward. Also, the at-
tentional chacteristics of the initial response enhance 
the subsequent processing of reward information. This 
mechanism affords overall a gain in speed and accuracy 
without major cost.
	 Before this two-component response structure had 
been identified, some interpretations considered only 
the attentional response, which we now know concerns 
only the initial response component. Without looking 
at the second, reward response component, the whole 
dopamine response appeared to be simply a salience 
signal,19 and the function in reward prediction error 
coding was missed. Experiments on aversive stimuli re-
ported some dopamine activations,20,21 which were later 
found to reflect the physical rather than aversive stimu-
lus components.17 Together, these considerations led to 
assumptions of primarily salience coding in dopamine 
neurons,22 which can probably now be laid to rest.

Risky rewards, subjective value, 
and formal economic utility

Rewards are only sure in the laboratory. In real life, 
rewards are risky. We go to the pub expecting to meet 
friends and have a pint of beer. But we don’t know 
whether the friends will actually be there this evening, 
or whether the pub might have run out of our favor-
ite beer. Risk is usually considered as something bad, 
and in the case of rewards, the risk is associated with 
the possibility of not getting the best reward we expect. 
We won’t give animals beer in the laboratory, but we 
can nicely test reward risk by going to economic theory. 
The most simple and confound-free risky rewards can 
be tested with binary gambles in which either a large 
or a small reward occurs with equal probability of 
P=0.523: I get either the large or the small reward with 
equal chance, but not both. Larger risk is modeled by 
increasing the large reward and reducing the small re-
ward by equal amounts, thus keeping the mean reward 
constant. Monkeys like fruit juices and prefer such risky 
rewards over safe rewards with the same mean when 
the juice amount is low; they are risk seekers. Accord-
ingly, they prefer the more widely spread gamble over 
the less spread one; thus they satisfy what is referred to 
as second-order stochastic dominance, a basic econom-
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ic construct for assessing the integration of risk into 
subjective value. However, with larger juice amounts, 
monkeys prefer the safe reward over the gamble; they 
are risk avoiders, just as humans often are with larger 
rewards (Figure 5A). Thus, monkeys show meaningful 
choices of risky rewards.
	 The binary reward risk is fully characterized by the 
statistical variance. However, as good a test as it is for 
decisions under risk, it does not fully comprise everyday 
risks which often include asymmetric probability distri-
butions and thus skewness risk. Why do gamblers of-
ten have health insurance? They prefer positive skew-
ness risk, a small but possible chance of winning large 
amounts, while avoiding negative skewness risk, the 
small but possible chance of a costly medical treatment. 
Future risk tests should include skewness risk to model 
a more real-life scenario for risk.
	 The study of risky rewards allows us to address two 
important questions for dopamine neurons, the incor-
poration of risk into subjective reward value, and the 
construction of a formal, mathematical economic utility 
function, which provides the most theory-constrained 
definition of subjective reward value for economic de-

cisions.24,25 Dopamine neurons show larger responses to 
risky compared with safe rewards in the low range, in a 
similar direction to the animal’s preferences; thus do-
pamine neurons follow second-order stochastic domi-
nance. Formal economic utility can be inferred from 
risky gambles and constitutes an internal measure of 
reward value for an individual; it is measured in utils, 
rather than milliliters or pounds, euros or dollars. It can 
be measured from choices under risk,26 using the frac-
tile chaining procedure.27 Monkeys show nonlinear util-
ity functions that are compatible with risk seeking at 
small juice amounts and risk avoiding at larger amounts. 
Importantly, dopamine neurons show the same nonlin-
ear response increases with unpredicted rewards and 
risky gambles (Figure 5B). Thus, dopamine responses 
signal formal economic utility as the best characterized 
measure of reward value; the dopamine reward predic-
tion error response is in fact a utility prediction error 
response. This is the first utility signal ever observed in 
the brain, and to the economist it identifies a physical 
implementation of the artificial construct of utility.

Dopamine reward prediction errors 
in human imaging

Dopamine reward prediction error signals are not lim-
ited to animals, and occur also in humans. Besides the 
mentioned electrophysiological study,9 hundreds of hu-
man neuroimaging studies demonstrate reward predic-
tion error signals in the main reward structures,28 in-
cluding the ventral striatum.29,30 The signal reflects the 
dopamine response 31and occurs in striatal and frontal 
dopamine terminal areas rather than in midbrain cell 
body regions, presumably because it reflects summed 
postsynaptic potentials. Thus, the responses in the 
dopamine-receiving striatum seen with human neuro-
imaging demonstrate the existence of neural reward 
prediction error signals in the human brain and their 
convenient measurement with noninvasive procedures.

General consequences of dopamine 
prediction error signaling

We know that dopamine stimulation generates learning 
and approach behavior.4 We also know that encounter-
ing a better-than-predicted reward stimulates dopamine 
neurons. Thus, the dopamine stimulation arising from a 
natural reward may directly induce behavioral learning 
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and actions. Every time we see a reward, the responses 
of our dopamine neurons affect our behavior. They are 
like “little devils” in our brain that drive us to rewards! 
This becomes even more troubling because of the par-
ticular dopamine response characteristics, namely the 
positive dopamine response (activation) to positive 
prediction errors: the dopamine activation occurs when 
we get more reward than predicted. But any reward we 
receive automatically updates the prediction, and the 
previously larger-than-predicted reward becomes the 
norm and no longer triggers a dopamine prediction er-
ror surge. The next same reward starts from the higher 
prediction and hence induces less or no prediction error 
response. To continue getting the same prediction error, 
and thus the same dopamine stimulation, requires get-
ting a bigger reward every time. The little devil not only 
drives us towards rewards, it drives us towards ever-in-
creasing rewards.

	 The dopamine prediction error response may belong 
to a mechanism that underlies our drive for always want-
ing more reward. This mechanism would explain why we 
need ever higher rewards and are never satisfied with 
what we have. We want  another car, not only because the 
neighbors have one but because we have become accus-
tomed to our current one. Only a better, or at least a new, 
car would lead to a dopamine response, and that drives us 
to buy one. I have enough of my old clothes, even if they 
are still in very good condition, and therefore I go shop-
ping. What the neighbors have, I want also, but better. The 
wife of 7 years is no longer good enough, so we need a new 
one, or at least another mistress. The house needs to be 
further decorated or at least rewallpapered, or we just buy 
a bigger one. And we need a summer house. There is no 
end to the ever-increasing needs of rewards. And all that 
because of the little dopamine neurons with their positive 
reward prediction error responses!
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Dopamine mechanism of drug addiction

Dopamine neurons are even more devilish than ex-
plained so far. They are at the root of addictions to 
drugs, food, and gambling. We know, for example, that 
dopamine mechanisms are overstimulated by cocaine, 
amphetamine, methamphetamine, nicotine, and alco-
hol. These substances seem to hijack the neuronal sys-
tems that have evolved for processing natural rewards. 
Only this stimulation is not limited by the sensory re-
ceptors that process the environmental information, 
because the drugs act directly on the brain via blood 
vessels. Also, the drug effects mimic a positive dopa-
mine reward prediction error, as they are not compared 
against a prediction, and thus induce continuing strong 
dopamine stimulation on their postsynaptic receptors, 
whereas the evolving predictions would have prevented 
such stimulation.32 The overstimulation resulting from 
the unfiltered impact and the continuing positive pre-
diction error-like effect is difficult to handle for the neu-
rons, which are not used to it from their evolution, and 
some brains cannot cope with the overstimulation and 
become addicted. We have less information about the 
mechanisms underlying gambling and food addiction, 
but we know that food and gambling, with their strong 
sensory stimulation and prospect of large gains, activate 
dopamine-rich brain areas in humans and dopamine 
neurons in animals.

Non-dopamine reward prediction errors

The dopamine reward prediction error signal is propa-
gated along the widely divergent dopamine axons to 
the terminal areas in the striatum, frontal cortex, and 
amygdala, where they innervate basically all (striatum) 
or large proportions of postsynaptic neurons. Thus, the 
rather homogeneous dopamine reward signal influ-
ences heterogeneous postsynaptic neurons and thus af-
fects diverse postsynaptic functions. However, reward 
prediction error signals occur also in other reward 
structures of the brain. Lateral habenula neurons show 

bidirectional reward prediction error signals that are 
sign inverted to dopamine responses and may affect do-
pamine neurons via inhibitory midbrain reticular neu-
rons.33 Select groups of phasically and tonically firing 
neurons in the striatum and globus pallidus code posi-
tive and negative reward prediction errors bidirection-
ally.34-36 Some neurons in the amygdala display separate, 
bidirectional error coding for reward and punishment.37 
In the cortex, select neurons in anterior cingulate38,39 
and supplementary eye field40 code reward prediction 
errors. All of these reward prediction error signals are 
bidirectional; they show opposite changes to positive 
versus negative prediction errors. The reward predic-
tion error responses in these subcortical and cortical 
neurons with their specific neuronal connections are 
unlikely to serve reinforcement processes via divergent 
anatomical projections; rather they would affect plastic-
ity at specifically connected postsynaptic neurons. 

Conclusions

The discovery that the most powerful and best char-
acterized reward signal in the brain reflects reward 
prediction errors rather than the simple occurrence of 
rewards is very surprising, but is also indicative of the 
role rewards play in behavior. Rather than signaling 
every reward as it appears in the environment, dopa-
mine responses represent the crucial term underlying 
basic, error-driven learning mechanisms for reward. 
The existence of the error signal validates error-driven 
learning rules by demonstrating their implementation 
in neuronal hardware. The additional characteristic of 
economic utility coding conforms to the most advanced 
definition of subjective reward value and suggests a role 
in economic decision mechanisms. Having a neuronal 
correlate for a positive reward prediction error in our 
brain may explain why we are striving for ever-greater 
rewards, a behavior that is surely helpful for surviving 
competition in evolution, but also generates frustra-
tions and inequalities that endanger individual well-
being and the social fabric.  o
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Codificación del error de predicción de la 
recompensa dopaminérgica

Los errores en la predicción de la recompensa se deben 
a las diferencias entre las recompensas recibidas y predi-
chas. Ellos son cruciales para las formas básicas de apren-
dizaje acerca de las recompensas y nos hacen esforzarnos 
por más recompensas, lo que constituye un rasgo evolu-
cionario beneficioso. La mayoría de las neuronas dopami-
nérgicas en el mesencéfalo de los humanos, monos y roe-
dores dan información sobre el error en la predicción de 
la recompensa; ellas son activadas por más recompensa 
que la predicha (error de predicción positivo); se mantie-
nen en una actividad basal para el total de las recompen-
sas predichas, y muestran una actividad disminuida con 
menos recompensa que la predicha (error de predicción 
negativo). La señal de dopamina aumenta de forma no 
lineal con el valor de la recompensa y da claves sobre la 
utilidad económica formal. Las drogas adictivas generan, 
secuestran y amplifican la señal de recompensa dopami-
nérgica e inducen efectos dopaminérgicos exagerados y 
descontrolados en la plasticidad neuronal. El estriado, la 
amígdala y la corteza frontal también codifican errores 
en la predicción de la recompensa, pero solo en ciertas 
subpoblaciones de neuronas. Por lo tanto, el concepto 
importante de errores en la predicción de recompensa 
está implementado en el hardware neuronal.     

Codage de l’erreur de prédiction de la 
récompense dopaminergique

Les erreurs de prédiction de la récompense consistent en 
différences entre la récompense reçue et celle prévue. 
Elles sont déterminantes pour les formes basiques d’ap-
prentissage concernant la récompense et nous font lutter 
pour plus de récompense, une caractéristique bénéfique 
de l’évolution. La plupart des neurones dopaminergiques 
du mésencéphale des humains, des singes et des rongeurs 
indiquent une erreur de prédiction de la récompense ; ils 
sont activés par plus de récompense que prévu (erreur de 
prédiction positive), restent dans l’activité initiale pour 
une récompense complètement prévue et montrent une 
activité diminuée en cas de moins de récompense que 
prévu (erreur de prédiction négative). Le signal dopami-
nergique augmente de façon non linéaire avec la récom-
pense et code l’utilité économique formelle. Les médi-
caments addictifs génèrent, détournent et amplifient le 
signal de la récompense dopaminergique et induisent des 
effets dopaminergiques exagérés et non contrôlés sur la 
plasticité neuronale. Le striatum, l’amygdale et le cortex 
frontal manifestent aussi le codage erroné de la prédic-
tion de la récompense, mais seulement dans des sous-po-
pulations de neurones. L’important concept d’erreurs de 
prédiction de la récompense est donc mis en œuvre dans 
le matériel neuronal.
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