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Rewarding choice options typically contain multiple components, but neural signals in single brain voxels are scalar and pri-
marily vary up or down. In a previous study, we had designed reward bundles that contained the same two milkshakes with
independently set amounts; we had used psychophysics and rigorous economic concepts to estimate two-dimensional choice
indifference curves (ICs) that represented revealed stochastic preferences for these bundles in a systematic, integrated man-
ner. All bundles on the same ICs were equally revealed preferred (and thus had same utility, as inferred from choice indiffer-
ence); bundles on higher ICs (higher utility) were preferred to bundles on lower ICs (lower utility). In the current study, we
used the established behavior for testing with functional magnetic resonance imaging (fMRI). We now demonstrate neural
responses in reward-related brain structures of human female and male participants, including striatum, midbrain, and
medial orbitofrontal cortex (mid-OFC) that followed the characteristic pattern of ICs: similar responses along ICs (same util-
ity despite different bundle composition), but monotonic change across ICs (different utility). Thus, these brain structures
integrated multiple reward components into a scalar signal, well beyond the known subjective value coding of single-compo-
nent rewards.
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Significance Statement

Rewards have several components, like the taste and size of an apple, but it is unclear how each component contributes to the
overall value of the reward. While choice indifference curves (ICs) of economic theory provide behavioral approaches to this
question, it is unclear whether brain responses capture the preference and utility integrated from multiple components. We
report activations in striatum, midbrain, and orbitofrontal cortex (OFC) that follow choice ICs representing behavioral prefer-
ences over and above variations of individual reward components. In addition, the concept-driven approach encourages
future studies on natural, multicomponent rewards that are prone to irrational choice of normal and brain-damaged
individuals.

Introduction
In daily life, we choose between options that have multiple com-
ponents. In a restaurant, we can get, for the same price, a small
but tasty steak or a larger but less tasty steak. In choosing the

latter, we give up some taste for more meat. Or the components
can be distinct objects, like a meal with small lasagna and big
salad, or a meal with large lasagna and small salad; in choosing
the latter, we give up some salad for more lasagna. In both cases,
our preference for an option (steak or meal) is based on more
than one component. To understand such choices, we need to
know whether the value integrated from different components
can be represented by scalar measures of preferences and their
neuronal processes.

Functional magnetic resonance imaging (fMRI) studies inves-
tigated choices between bundles with multiple-components.
Several brain regions are involved in such choices, including
striatum (Hunt et al., 2014), frontal cortex (Hunt et al., 2014;
Busemeyer et al., 2019; Kurtz-David et al., 2019), cingulate cortex
(Fujiwara et al., 2009; Busemeyer et al., 2019; Kurtz-David et al.,
2019), and insula (Busemeyer et al., 2019). One study showed
encoding of values of gift cards that contained an amount com-
ponent and a quality component (de Berker et al., 2019), other
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studies investigated irrational choices with monetary-gamble
components (Kurtz-David et al., 2019) and addressed irrational
attraction and decoy effects (Chau et al., 2014; Chung et al.,
2017; Gluth et al., 2017). Whereas these studies demonstrated
neural signals for multicomponent rewards, they did not specifi-
cally investigate whether the signals captured the reward value
integrated from multidimensional vectorial choice options. To
resolve the issue would require to study how the increase of one
component compensates for the decrease of the other compo-
nent without changing the preference, and how such a trade-off
is represented in scalar neural signals.

This trade-off mechanism constitutes the heart of indifference
curves (ICs) underlying revealed preference theory (Samuelson,
1938). Each two-component choice option is graphically repre-
sented at a specific x-y coordinate of a two-dimensional plot
(Mas-Colell et al., 1995). All bundles that are equally preferred to
each other (choice indifferent, indicating same utility despite dif-
ferent bundle composition) are located on the same IC regardless
of underlying variation in bundle composition. Preferred bun-
dles are located on higher ICs (farther away from the origin,
higher utility). This scheme is widely used for conceptualizing
economic preferences in economics textbooks, consumer choice
(Simonson, 1989; Tversky and Simonson, 1993; Rieskamp et al.,
2006), animal choice (Kagel et al., 1975; Pastor-Bernier et al.,
2017), and neuronal reward signals in animals (Pastor-Bernier et
al., 2019). The preference scheme has been extended to stochastic
choice (McFadden and Richter, 1990; McFadden, 2005), which is
helpful for multitrial statistical analyses of human brain
responses. Thus, the question for the current study arises: would
human blood oxygen level-dependent (BOLD) signals follow the
characteristics of ICs that define the emergence of scalar meas-
ures from vectorial bundles?

We investigated scalar BOLD signals for two-component
milkshakes with sugar and fat components that elicit subjective
valuations and neural reward signals (Grabenhorst et al., 2010;
Zangemeister et al., 2016). We used three revealed preference
levels (three ICs, different utility), each estimated from five
equally preferred bundles [indifference points (IPs) located on
same IC, same utility despite different bundle composition].
Participants were presented with choice options that contained
one fatty and one sugary milkshake with specific amounts. We
estimated psychophysical IP at which a reference bundle and a
variable bundle were chosen with equal probability. From these
IPs, we estimated well-ordered and non-overlapping ICs. Using
two independent general linear models (GLM), we found that
scalar BOLD responses in striatum, midbrain and medial orbito-
frontal cortex (mid-OFC) followed the IC scheme: the responses
varied monotonically across ICs but changed only significantly
along individual ICs, indicating orderly integration of multicom-
ponent choice options into single-dimensional measures. The be-
havioral results of this study have been published in detail
(Pastor-Bernier et al., 2020).

Materials and Methods
Participants
A total of 24 participants (19–36 years old with mean age 25.4 years; 11
males, 13 females) performed a binary choice task that was followed, in
50% of trials, by a Becker–DeGroot–Marschak (BDM) task inside the
fMRI scanner using sugary and fatty milkshakes. All participants
had known milkshake appetite, and none had diabetes or lactose intoler-
ance. All participants provided written consent based on an information
sheet. The Cambridgeshire Health Authority (Local Research Ethics

Committee) approved this study. The behavioral results have been pub-
lished with more details separately (Pastor-Bernier et al., 2020).

Experimental design
The fundamental notion underlying this experiment posits that choice
options consist of at least two components, and that preferences are
revealed by observable choice. The multicomponent choice options are
called bundles. It is immaterial for the general concept of multicompo-
nent choice whether the individual components are parts of a single
object (like size and taste of a steak in the example above) or constitute
separate objects within a choice option (like lasagna and salad). Decision
makers prefer bundles with larger or better components to those with
smaller or worse components. Importantly, however, their preferences
concern all components and are not directed at a single component
alone. This property is manifested when participants prefer bundles in
which one of the components of the preferred bundle is smaller than the
same component in the non-preferred bundle (and the other component
is large enough to overcompensate). At one point, participants may
express equal preference for bundles in which the lower amount of one
component is fully compensated by the higher amount in the other com-
ponent, leading to choice indifference. We repeatedly measured choices
with two options, each of which contained two milkshake components;
the milkshakes constituted rewards, as shown by the voluntary con-
sumption in all participants.

Stimuli and rewards
In each of the two bundles, we used stimuli to show the two milkshake
components and their payout amounts (Fig. 1A). In each bundle stimu-
lus, there were two rectangles aligned vertically. Each bundle component
was indicated by the color of each rectangle. We extensively piloted vari-
ous liquidized foods and liquids, and we found that milkshakes with a
controlled mixture of fat and sugar give the most reliable across-partici-
pant behavioral performance. The presently used milkshakes with sugar
and fat components that were found in previous studies to elicit subjec-
tive valuations and activate neural reward structures (Grabenhorst et al.,
2010; Zangemeister et al., 2016). We delivered the milkshakes separately
with a 0.5-s interval (see below). As drinks consisting of only sugar or
only fat were considered as too unnatural, we used a high-fat low-sugar
milkshake (75% double cream and 25% whole milk, with no sugar) as
component A (top, blue), and a high-sugar low-fat milkshake (skimmed
milk with 10% sugar) as component B (bottom, red). Inside each rectan-
gle, the vertical position of a bar indicated the component’s physical
amount (higher was more). We delivered the milkshakes to the partici-
pants using a custom-made silicone tubing syringe pump system (VWR
International Ltd). The pump was approved for delivering foodstuffs
and was controlled by a National Instruments device (NI-USB-6009) via
the Data Acquisition Toolbox in MATLAB. We displayed stimuli to par-
ticipants and recorded behavioral choices using the Psychtoolbox in
MATLAB running on a Windows (Dell) computer (Pastor-Bernier et al.,
2020).

Binary choice task before fMRI scanning
In the binary choice task, each participant revealed one’s preference in
repeated choices between two bundle stimuli, each indicating the
amounts of two milkshake components (Fig. 1A). The two bundles
(stimuli) appeared on a computer screen simultaneously in front of the
participant. The left and right positions of the bundles were fixed but
pseudorandomly alternated. Each bundle stimulus included the same
two kinds of milkshakes with independent physical amounts. Both stim-
uli appeared after a pseudorandomly varying interval (mean 0.5 s) after a
central fixation cross. In each trial, the participant chose between the
two bundles by pressing a button once (on a computer keyboard; left or
right arrow corresponding to choosing left or right bundle). We defined
reaction time as the interval between appearance of the two bundle stim-
uli and the participant’s button press. We delivered the two milkshakes
to the participant from the chosen bundle with a probability p= 0.2
using a Poisson distribution; i.e., the milkshake combination of one out
of an average of five chosen bundles was delivered, and no milkshake
was delivered in the remaining trials. Component B (high-sugar low-fat
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milkshake) was delivered at a constant interval
of 0.5 s after component A (high-fat low-sugar
milkshake). We used this constant delay,
instead of simultaneous delivery of two milk-
shakes or a pseudo-randomly alternating milk-
shake sequence, to prevent uncontrolled
milkshake interactions, to maintain distin-
guishability of the individual milkshake
rewards and to keep temporal discounting
constant. Therefore, the utility of component
B derived from both milkshake rewards and
the temporal discounting specific for each
milkshake. While the interval of 0.5 s was suf-
ficiently short to not disrupt task performance
and data collection, it was too short to com-
pletely prevent the high-fat milkshake blend-
ing into the subsequent high-sugar milkshake
inside the participant’s mouth. As the interval
was kept constant in all participants and at all
times, the mixture provided a constant gusta-
tory experience. Participants were asked not to
eat or drink anything at least 4 h before the
task performance. However, satiety may still
be a concern given the high fat and sugar con-
tent of our milkshakes. To address this issue,
we set the probability of p= 0.2 payout sched-
ule, limited each payout to 10.0 ml at most,
and delivered no more than a total of 200 ml
of liquid to the participant in a session. We
addressed the issue with additional analyses
and failed to find differential, sensory-specific
satiety noticeable in choice probability meas-
ures (see below; Pastor-Bernier et al., 2020).

Psychophysical assessment of IPs
We used a psychophysical staircase method
(Green and Swets, 1966; Pastor-Bernier et al.,
2020) to estimate the IPs at which, by defini-
tion, each of the two bundle options was cho-
sen equally frequently (i.e., probability p= 0.5
for each option), indicating choice indifference
for the options. We established bundles at 15
IPs for each participant and used them in the
subsequent fMRI experiment.

To start the psychophysical procedure, we
first set component A to 0 ml and component
B to either 2, 5, or 8 ml in the reference bun-
dle. We then systematically varied the variable
bundle. In the variable bundle, we first set the
amount of its component A to one unit higher
(mostly 0.5, 1.0, or 2.0 ml), we thereby speci-
fied the amount of component A gained by
each participant from the choice. We then ran-
domly selected (without replacement) one
amount of component B from a total of seven
fixed amounts (multiples of 0.5 ml), which
span the whole, constant range of amounts
being tested. We repeatedly selected the
amounts until we tested each of the seven
amounts once. We repeated estimation for
each IP six times using a sigmoid function (see
Eqs. 1, 1a below), requiring a total of 42
choices for estimating each IP. The amount of component B in the vari-
able bundle was usually lower than the one in the reference bundle
at the IP. With these procedures, we assessed how much of compo-
nent B a participant was willing to trade-in for an additional unit of
component A.

We obtained more IPs from the participants’ choices between the
fixed reference bundle and the variable bundle, in which the amount of

component A was increased stepwise, at each step varying the amount of
component B to estimate the choice IP at which the animal was indiffer-
ent between the two bundles. Thus, bundle position advanced from top
left to bottom right on the two-dimensional IC (Fig. 1B). We are aware
that testing with unidirectional progression may cause particular varia-
tions in IP estimations than testing in a random sequence or in opposite
directions (Knetsch, 1989). However, our primary interest in this study
was to investigate basic neural processes in close relation to

Figure 1. Experimental procedure and behavior. A, Choice task outside the fMRI scanner. The participant chose between
a reference bundle and a varied test bundle. Each bundle consisted of two components, component A (blue bar) and compo-
nent B (red bar). The amount of each component was indicated to the participant by the height of a white bar (higher was
more). Component A was a low-sugar, high-fat milkshake. Component B was a low-fat high-sugar milkshake. The two milk-
shakes of the chosen bundle were delivered at the end of each trial with a probability of p= 0.2. B, Schematic diagram of
three ICs and five IPs on each IC (same data points as shown in Pastor-Bernier et al., 2020; their Fig. 1F). C, Example ICs
from a typical participant. Solid lines represent three ICs (hyperbolically fitted by IPs). Dotted lines represent 95% confidence
interval of the hyperbolic fit. The inset shows the psychophysical function of one IP. The IP (black dot in the inset) was esti-
mated by probit regression on the test points (blue dot in the inset). The same graph is shown as in Pastor-Bernier et al.
(2020; their Fig. 2A). D, Histogram of residuals between fitted ICs (with a leave-one-out procedure) and left-out IPs across all
participants. The residuals formed a normal symmetric distribution (red line). E, Bundle task inside the fMRI scanner. At 4 s
after the bundle-on phase, the participant performed in pseudorandomly selected 50% of trials an additional BDM task
against the computer (bidding 1–20 United Kingdom pence). The reward was given if the participant won the BDM (bid�
computer bid).
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unequivocally estimated IPs and ICs rather than addressing the more
advanced features of irreversibility or hysteris in ICs.

We used three different fixed amounts of component B for the refer-
ence bundle (2, 5, or 8 ml), to obtain three IC levels. We estimated four
IPs, together with the fixed reference bundle as an IP, at each of three
ICs (i.e., revealed preference levels), resulting in 15 IPs, in a total of 504
choices (trials) among 84 different choice option sets in each participant
(six repetitions for seven psychophysical amounts at each of the 12 IPs).

Statistical analysis
Numeric estimation of IPs
We used a sigmoid fit to numerically estimate the choice IPs. The fit was
obtained from the systematically tested choices with a generalized linear
regression. The generalized linear regressions used the glmfit function in
MATLAB (MATLAB version R2015b) with a binomial distributed pro-
bit model, which is an inversed cumulative distribution function (G).
More specifically, we apply the link function to the generalized linear
regression y = b 0 1 b 1Bvar1 « and write it as:

GðyÞ ¼ b 0 1 b 1Bvar 1 « ; (1)

where y represents the number of trials the variable bundle is chosen in
each block of a six-repetition series, b 0 represent the constant offset, b 1

represent the regression slope coefficient, Bvar represent the physical
reward amount (ml) of component B in the variable bundle, and « rep-
resent the residual error. We used the probit model as it assumes a mul-
tivariate normal distribution of the random errors, which makes the
model attractive because the normal distribution gives a good approxi-
mation to most of the variables. The model does not hypothesize error
independence and is frequently used in econometrics (Razzaghi, 2013).
On the other hand, the logit model, which is also commonly used in eco-
nomics, is simpler to compute but has more restrictive hypotheses on
error independence. Our preliminary data had shown a similar fit for
both the logit and probit model, therefore, we used the probit model fit
because of its less restrictive hypotheses. Thus, we approximated the IPs
with the probit-model sigmoid fit, which can be written as follows:

Indifference Point ¼ �ðb 0=b 1Þ; (1a)

where b 0 and b 1 represent coefficients of the generalized linear regres-
sion (Eq. 1). We obtained these coefficients from the probit analysis
(Amemiya, 1981).

ICs. In each participant, we obtained each single IC separately from
an individual set of five equally revealed preferred IPs with differently
composed bundles using a weighted least-square nonlinear regression.
We used a weighted regression to account for choice variability within
participant; the weight was defined as the inverse of the standard devia-
tion of the titrated physical amount of component B at the correspond-
ing IP (the IP having been estimated with the probit regression). We
estimated the best b coefficients from the least-square regression to
obtain a single IC (utility level), using the basic hyperbolic equation:

IC ¼ b 0 1 b 1B 1 b 2A 1 b 3BA 1 « ; (2)

where A and B represent physical amounts of component A and compo-
nent B (ml), which refer to the x- and y-axes, respectively. Note that
(b 2/b 1) is the slope coefficient and b 3 is the curvature coefficient of
the nonlinear least-square regression. As IC is a constant (representing
one utility level), we merged the IC constant with the offset constant
(b 0) and the error constant (« ) into a common constant k. To draw the
ICs, we calculated the amount of component B from the derived equa-
tion as a function of the amount of component A:

B ¼ ðk� b 2AÞ=ðb 1 1 b 3AÞ: (2a)

We graphically displayed the fitted ICs (Fig. 1B,C) by plotting the
preset physical amount of component A as the x coordinates and

calculated the fitted amount of component B, based on Equation 2a, as
the y coordinates. We estimated the error of the hyperbolic fit as the
95% confidence interval. When calculating the ICs, we gave less weight
to the IP with higher error. This model offered good fits in our earlier
work (Pastor-Bernier et al., 2017, 2019, 2020). In this way, five IPs
aligned to a single fitted IC. For each participant, we fitted three ICs rep-
resenting increasing revealed preference levels (low, medium, high) far-
ther away from the origin (Fig. 1B,C). The indifference map that resulted
from the 3� 5 IPs was unique for each of the 24 participants. The indif-
ference maps of the 24 participants were presented before (Pastor-
Bernier et al., 2020).

Leave-one-out validation of ICs
We used a leave-one-out analysis to test the validity of the hyperbolic IC
fit to the IPs. We systemically removed one IP in each IC (excluding the
initial reference bundle at x = 0), and then fitted the IC again using the
hyperbolic model. We then assessed the differences (deviation) between
the original IC (without IP removal) and the new IC without the one
left-out IP. The deviation was defined as the Euclidean distance of com-
ponent B between the original (left-out) IP and the IP estimated from
the refitted IC:

d ¼ BIP � Brefit; (3)

with d representing the difference (i.e., residual; in ml; y-axis), BIP repre-
senting the physical amount of component B in the left-out IP (ml), and
Brefit representing the estimated physical amount of component B in the
refitted IC (ml). In this way a residual of 0 ml suggested that removal of
the left-out IP did not change the shape of that IC, while any residual
unequal to 0 ml could quantify the deviation.

Control of alternative choice factors
To assess the potential influence of other factors affecting the partici-
pants’ choice, we performed a logistic regression fit on choices to test
whether the choices were indeed explained by the bundle components.
We performed a random-effect logistic regression on the choice data
from each participant as follows:

y ¼ b 0 1 b 1RefB 1 b 2VarA 1 b 3VarB 1 b 4RT 1 b 5VarPos

1 b 6PChoice 1 « ; (4)

with y as a dummy variable (either 1 or 0, indicating choosing or not
choosing the variable bundle), RefB as physical amount (ml) of compo-
nent B in the reference bundle, VarA and VarB as physical amount (ml)
of components A and B in the variable bundle, RT as reaction time (ms),
VarPos indicating left or right position (0 or 1) of the variable bundle
stimuli shown on the computer screen relative to the reference bun-
dle, and PChoice representing choice of the previous trial (0 or 1).
Each b coefficient was normalized by multiplying the standard
deviation of the respective independent variable and dividing by the
standard deviation of the dependent variable (y). We subsequently
used a one-sample t test against 0 to assess the statistical significance
of each of the b coefficients.

We assessed the normalized b coefficients and p values for each
individual participant and then calculated averages across 24 partici-
pants. With the regression model, we found a negative correlation of
choosing the variable bundle and the amount of component B in the ref-
erence bundle (RefB: b = �0.436 0.16, p= 0.0206 0.005; mean 6
SEM; amount of component A in the reference bundle was always a con-
stant 0 ml). We also found positive correlation of choosing the variable
bundle and amount of both component A and component B in the vari-
able bundle (VarA: b = 0.676 0.16, p= 0.0096 0.004; VarB: b =
0.946 0.33, p= 0.0126 0.009). We further found that for these three
variables, the b coefficients significantly differed from 0 with one-sam-
ple t tests (p= 0.012, p= 0.00088, and p= 0.00028, respectively), confirm-
ing the robustness of these b . Thus, we confirmed that the choices
depended on the amount of reward of both variable and reference bun-
dle. We also validated that both bundle components were important for
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the choices. All remaining variables in the regression, including reaction
time, left or right position of the reference bundle on the computer
screen and choice of the previous trial, failed to account significantly for
the participant’s current choice (p= 0.754–0.9886 0.003–0.290). We
therefore conclude that, in our experiment, the bundles with their two
components, instead of other factors, account for the revealed preference
relationships.

Satiety control
Besides considering other components in the design, we also tested
potential effects of satiety. Satiety may have affected the preferences for
the two bundle components, even if the rewards were paid out only in
one fifth of the trials on average and were limited to ,200 ml.
Differences in devaluation between the two-component milkshake might
be a major factor for changing in an uncontrolled manner the currency
relationship of the two components. This kind of unequal devaluation
should result in a graded change in the instantaneous choice probability
around the IPs over the test steps of 42 trials. We used the following
equation to calculate the instantaneous choice probability:

y ¼
X

ðn ¼ 1 to 6ÞðCV=TSÞ; (5)

with y representing the instantaneous probability (p ranging from 0.0 to
1.0), CV represent choice or not-choice of variable bundle (1 or 0), and
TS represent test step (repetition 1–6).

We found only insignificant fluctuations in choice probabilities,
without any consistent upward or downward trend in the one-way
repeated measures ANOVA, together with the post hoc Tukey’s test
(above IP: F(5,41) = 0.28, p. 0.05; below IP: F(5,41) = 1.53, p. 0.05).

Behavioral task during fMRI scanning
During scanning, we used a value elicitation task that allowed more trials
in a shorter time frame. At the beginning of each trial, one bundle was
shown to the participant for 5 s (bundle-on phase in Fig. 1E) in the cen-
ter of the computer monitor after the initial fixation period (500ms).
The bundle was pseudorandomly selected from the 15 IP bundles in
three ICs of each participant. Bundle composition (amounts of the two
components) was set in each participant according to performance in
the binary choice task before fMRI scanning. Hence, the 15 bundles for
each participant were not identical across participants. Subsequently, a
fixation cross appeared for a pseudorandomly varying interval (mean
2 s). In 50% of the trials (pseudorandomly selected), the task was termi-
nated after this fixation cross.

In the other 50% of the trials, we presented the participant with a
BDM task that was akin to a second price auction (Becker et al., 1964).
This task served as an independent mechanism that related the estimated
ICs to stated utility. In the BDM (bidding phase in Fig. 1E), we gave the
participant a fresh 20 United Kingdom pence endowment on each trial.
Using this endowment, the participant bid for a two-component bundle
against a pseudorandom computer bid (extracted from a normal distri-
bution with replacement). To bid, the participant moved a cursor, shown
on the computer screen, horizontally with the left and right keyboard
arrows. We registered the BDM bid (position of the cursor) 5 s after pre-
senting the bidding scale to the participant. When bidding no less than
the computer, the participant received the bundle (milkshake) reward
from both components and paid the monetary value equal to the com-
puter bid. By contrast, when bidding less than the computer, the partici-
pant lost the auction, paid nothing and would not get any bundle
(milkshake) reward. We showed the participant the result of the auction
immediately after having placed the bid, by displaying a respective win
(green circle) or loss (red square) stimulus on the computer monitor
(Fig. 1E); when winning the bid, the participant received the milkshake
rewards in the sequence and frequency as in the binary choice task.

We first selected one bundle randomly (without replacement) from
the participant-specific set of 15 bundles (the 15 bundle IPs used to fit
the three ICs as shown in Fig. 1). Then we showed the participant the
selected single bundle during the bundle-on phase. We presented each
of the 15 bundles to the participant for 24 times, resulting in a total of

360 trials, which included 180 trials (50%) with BDM bidding (Fig. 1E),
and we used the average of these bids as the participant’s BDM-esti-
mated utility.

First, we assessed whether the BDM bids increased for bundles across
revealed preference levels but were similar for IP bundles on the same
revealed preference level, using Spearman’s rank correlation analysis and
further confirmation with the Wilcoxon signed-rank test (note that this
analysis used the coordinates of the individual IPs to which the ICs had
been fitted, not the IC coordinates themselves). We also performed a
generalized linear regression with a Gaussian link function (random-
effect analysis) for each participant and then averaged the b coefficients
and p values across all participants. We used the following generalized
linear regression:

y ¼ b 0 1 b 1PrefLev1b 2AmBundle 1 b 3TrialN

1 b 4PrevBid 1 b 5Consum 1 « ; (6)

with y representing amount of monetary bid, PrefLev representing
revealed preference level (low, medium, high), AmBundle representing
the summed amount (ml) of component A and component B in the cur-
rency of component A (converted with Eq. 2a), TrialN representing trial
number, PrevBid representing amount of monetary bid in the previous
trial, and Consum representing accumulated consumption amount (ml)
of component A and component B until that point in the experiment.
We normalized each b coefficient by multiplying the standard deviation
of the respective independent variable, and then dividing by the standard
deviation of the dependent variable y. We performed a subsequent one-
sample t test against 0 to assess the significance of each b coefficient
across all 24 participants. We found significant b coefficients of BDM
monetary bids to the preference level (PrefLev: b coefficient difference
from 0: p= 0.000026 with one-sample t test; mean across all 24 partici-
pants: b = 0.476 0.09, p=0.0166 0.015; mean 6 SEM) and bundle
amount (AmBundle: p= 0.0278; b = 0.156 0.13; p=0.0206 0.017), but
not in trial number (TrialN: b =�0.106 0.25; p= 0.7266 0.354), previ-
ous trial bid (PrevBid: b = 0.126 0.11; p= 0.6766 0.427) nor consump-
tion history (Consum: b = 0.126 0.11; p= 0.2246 0.185).

fMRI data acquisition
The functional neuroimaging data in this study were collected using a
3T Siemens Magnetom Skyra Scanner at the Wolfson Brain Imaging
Center. Echo-planar images (T2-weighted) with BOLD contrast were
acquired at 3 Tesla across 2 d with each participant. All images were in
plane resolution 3� 3 � 2 mm, 56 slices were acquired with 2-mm slice
thinness, repetition time (TR)= 3 s, echo time (TE)= 30ms, �90° flip
angle and �192-mm field of view. To reduce signal dropout in medial-
temporal and inferior-frontal regions during the scanning, the acquisi-
tion plane was tilted by �30° and the z-shim gradient prepulse was
implemented. We also applied MPRAGE sequences and co-registered to
acquired high-resolution T1 structural scans for group-level anatomic
localization with 1� 1 � 1 mm3 voxel resolution, slice thickness of 1
mm, 2.3-s TR, 2.98-ms TE, 9° flip angle and 900-ms inversion time.

fMRI data analysis
We used the Statistical Parametric Mapping package to analyze the neu-
roimaging data (SPM 12; Wellcome Trust Center for Neuroimaging).
We preprocessed the data by realigning the functional data to include
motion correction, normalizing to the standard Montreal Neurologic
Institute (MNI) coordinate, and then smoothing using a Gaussian kernel
with the full width at half maximum (FWHM) of 6 mm within data col-
lected on the same day. We then segmented the data to extract white
matter, gray matter and CSF and followed by co-registering the 2-d data
using the T1-weighted structural scans from each day. We then applied
a high-pass temporal filter to it with a 128 s cutoff period. We applied
GLMs, which assumed first-order autoregressions, to the time course of
activation. We modeled event onsets, in the time course of activation, as
single impulse response functions convolved with the canonical hemo-
dynamic response. We included the time derivatives in the functions set
and defined linear contrasts of parameter estimates to test the specific
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effect in each participant’s dataset. We obtained voxel values for each
contrast in the format of a statistical parametric map with corresponding
t-statistic. We applied a standard explicit mask (mask_ICV.nii) at the
first level analysis to mask out all activations outside of the brain. To test
our specific hypotheses, we used the following GLMs:

GLM1
This GLM served to search for regions whose stimulus-induced brain
activations varied across ICs (high. low) but not along the same ICs in
the bundle-stimulus-on phase (two-level t test analysis; Fig. 2). For each
participant, we estimated a GLM with the following regressors (R) of in-
terest: (R1–R15) as indicator functions for each condition during the
bundle-on phase (for the 15 different bundles), at the time when partici-
pant was presented with the visual bundle cue representing the milk-
shakes bundles; (R16) as indicator function for the BDM bid, at the time
when the participant made the bid; (R17) as R16 that was modulated by
the response to the participant’s bid (1–20); (R18) as indicator function
for the losing bid, at the time when the participant was presented with
visual cues showing the loss of bidding of the trial; (R19) as indicator
function for the auction win phase, at the time when the participant was
presented with the visual cues representing the winning of bidding;
(R20) as indicator function for the reward phase, i.e., the times when
participants received the milkshakes; (R21) as R20 that was modulated
by reward magnitude (in ml). Regressors R16–R19 were not used further
for this analysis and served only to regress out potential BDM effects in
the 50% of trials that included BDM.

In the second (group random-effects) level analysis, we entered the
all 24 participant-specific linear contrasts of the first-level regressors R1–
R15 (representing five bundles on each of the three preference levels)
into t tests (high . low revealed preference level) using Flexible
Factorial Design, resulting in group-level statistical parametric maps. In
the Flexible Factorial design matrix (second-level analysis), the following
second-level regressors were used: (R1–R24) indicator functions of par-
ticipant’s identifier representing participants 1–24 (within participant
effect); (R25–R27) indicator functions of the three revealed preference
levels (across ICs; R28–R32), indicator functions of the five bundles rep-
resenting amount of Component A in increasing magnitude or amount
of component B in decreasing magnitude (along the same ICs). We first
calculated the main contrast image based on high.low revealed prefer-
ence level (t tests). Second, we calculated a mask contrast based on five
bundles of component A in increasing magnitude (t tests). Third, we cal-
culated another mask contrast based on five bundles of component B in
increasing magnitude (t tests). The final result of GLM1 was represented
by the main contrast (high. low revealed preference level) masking out
(with exclusive mask) the two mask contrasts, controlling of the brain
responses along the same ICs.

GLM2
This GLM identified regions associated with the binary comparisons of
partial physical non-dominance bundles (Fig. 3). The GLM searched for
brain regions in which activations were higher for bundles that were on
a higher revealed preference level than bundles in which one component
was physically higher than in the preferred bundle (partial physical non-
dominance). In the first-level estimation, regressors were the same as in
GLM1 with the 21 regressors described above. In the second-level analy-
sis, we entered all pairs of bundles that met the following criteria: (bun-
dle 1): partial physical non-dominance bundles with higher revealed
preference level, but less (with at least 0.2 ml less in components A or 0.4
ml less in component B) in one component; (bundle 2): partial physical
dominance bundles with lower revealed preference level, but more in
one component. A third level group-level analysis (one-sample t test)
was performed with contrast images from the second level to generate
group-level statistical parametric maps across 24 participants.

GLM3
This GLM identified brain regions in which activity correlated with the
amount of BDM bid (0–20 pence) during the bidding phase (Fig. 4B). In
the first-level estimation, we used the following regressors and paramet-
ric modulators: (R1) as indicator function of bundle-on phase; (R2) as

R1 modulated by amount of BDM bid; (R3) as indicator function of
BDM bidding phase (50% of trials); (R4) as R3 modulated by amount of
BDM bid; (R5) as indicator function of intertrial interval when there was
no bidding phase (50% of trials); (R6) as indicator function at onset of
the loss cue, when the participant lost the BDM bidding; (R7) as indica-
tor function at onset of the win cue, when the participant won the BDM
bidding; (R8) as indicator function at onset of milkshake delivery; (R9)
as R8 modulated by physical amount of milkshake; (R10) as contrast of
win cue onset versus loss cue onset; (R11) as contrast of loss cue onset
versus win cue onset. In the second-level analysis, a one-sample t test
analysis was performed with contrast images from the first level to gen-
erate group-level statistical parametric maps across 24 participants.

Small volume corrections
To derive coordinates for small-volume correction in GLM1 and GLM2,
we entered the term “reward anticipation” in the Neurosynth meta-anal-
ysis database (Yarkoni et al., 2011) to obtain MNI coordinates. The
meta-analysis employed a total of 92 independent studies that showed
correlation of value elicitation with various brain regions. Our study
used MNI coordinates of ventral striatum [12, 10, �8], mid-OFC [20,
46, �18] and midbrain [8, �18, �14], obtained from this Neurosynth
meta-analysis database. We used a sphere with 6-mm radius for mid-
brain and striatum, and 10 mm for OFC, following the common
approach of using 6-mm radius spheres for subcortical structures and
larger spheres for cortical structures (Chib et al., 2009; De Martino et al.,
2009; Zangemeister et al., 2016).

We aimed at finding activity correlating with the BDM bid in GLM3.
Therefore, for small volume correction analysis in GLM3, we used a
MNI coordinate of dorsal striatum [12, 14, 4] found in a previous study
with BDM bidding (De Martino et al., 2009). We did not use coordinates
from Neurosynth in GLM3 because datasets related to BDM or other
auctions were not available in the Neurosynth database.

Region of interest (ROI) analysis
We selected significantly activated regions from brain maps established
with GLM1, GLM2, or GLM3 for further ROI analysis. We extracted
raw BOLD data from ROI coordinates based on group clusters, which
we defined independently for each participant using a leave-one-out
procedure based on the result of GLM1, GLM2 or GLM3. In the leave-
one-out procedure, we re-estimated the second-level analysis 24 times,
each time leaving out one participant, to define the ROI coordinates for
the left-out participant. Following data extraction, we applied a high-
pass filter with a cut off period of 128 s. The data were then z-normal-
ized, oversampled by a factor of 10 using the Whittaker–Shannon inter-
polation formula, and separated into trials to produce a matrix of trials
against time.

A total of three ROI analyses were performed in this study. First, a
Spearman’s rank analysis was used to examine BOLD signals that
changed across ICs but not along ICs (corresponding to GLM1 and
GLM3). Second, a bar chart was used to illustrate the three revealed pref-
erence levels in different ROIs (corresponding to GLM1). Third, a bar
chart was used to show activation changes between bundles with partial
physical non-dominance on different revealed preference levels (corre-
sponding to GLM2).

Spearman’s rank
In the Spearman’s rank analysis, we first regressed out the motion pa-
rameters (artifact) from the BOLD response with generalized linear
models. Then we used the participant’s residual BOLD response to gen-
erate time courses of Spearman’s rank correlation (Rho) coefficients.

For GLM1, we tested the correlation between BOLD response (dur-
ing the bundle-on phase) and revealed preference level (across-IC analy-
sis). We then calculated group averages and standard errors of the mean
for each time point for all participants, yielding averaged participant
effect size time courses (Fig. 2C). In the along-IC analysis, we ranked the
bundles along the same IC with individual participant’s BOLD signal
(Fig. 2D). A subsequent one-sample t test against 0 served to assess the
significance of the Rho coefficients across subjects.
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Figure 2. BOLD responses following the revealed preference scheme of two-dimensional ICs. A, Schematic of the analysis method used in GLM1 (arrows): significant BOLD signal across ICs
(increasing utility) but not within ICs (same utility despite different bundle composition, as inferred from choice indifference). Participants typically showed convex ICs (left) or linear ICs (right).
B, BOLD responses discriminating bundles between ICs (map threshold p, 0.005, extent threshold� 10 voxels), but no discrimination between bundles along same ICs (map threshold
p. 0.005; i.e., exclusive mask for brain response falls along the same ICs with threshold p= 0.005) in a group analysis. For activations identified with F contrast, see Extended Data Figure
2-1. For activations identified with the lower threshold of p, 0.001, see Extended Data Figure 2-2. C, Across-IC Spearman’s rank analyses of brain activations. The Rho coefficients followed
the hemodynamic response function (HRF) across the three IC levels in the ROIs of the three brain structures shown above in B. Solid blue lines represent mean Rho from 24 participants;
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For GLM3, we tested the correlation of the BOLD response (BDM
bidding phase) and the amount of BDM bids. Similar to GLM1, we then
calculated group averages and standard errors of the mean of the Rho
coefficients for each time point for all participants (Fig. 4B; Extended
Data Fig. 4-1). A subsequent one-sample t test against 0 served to assess
coefficient significance.

Bar chart for revealed preference level analysis
We used bars to illustrate how different IC levels were encoded in each
region of the brain. To generate an ROI bar chart, the BOLD response
was first extracted using the leave-one-out procedure described above.
For each participant, we obtained three generalized linear model fits to
the BOLD signal at time point 6 s. In each generalized linear model fit,
the identifier of one level of revealed preference was entered as a

regressor (dummy variable, e.g., 1 for bundles with high preference level
and 0 for middle or low preference level) together with motion parame-
ter regressors, which served to eliminate the motion artifact. We
obtained b coefficients of each level of revealed preference from the fit
and then calculated the mean and standard error of the b coefficient.
We then plotted the bar charts shown in Figure 2E. Paired t tests were
used to compare b coefficients between different revealed preference
levels. As a control, we also obtained b coefficients of five IPs from the
same level of revealed preference, averaged across the three levels, and
then calculated the mean and standard error of the b coefficient across
participants. We then plotted the bar charts shown in Figure 2F. One-
way ANOVAs were used to compare b coefficients between the five IPs.

Bar chart for partial physical non-dominance analysis
A bundle was defined as being partially physically non-dominant over
another bundle if one of its milkshake components had a physically
lower amount than the same component in the dominated bundle.
Thus, the revealed preferred bundle was partially physically non-domi-
nant. For an ROI analysis of partial physical non-dominance, we fitted
three generalized linear models to the BOLD response with bundle iden-
tifiers, which were two dummy variables representing partially physically
dominance bundles (lower revealed preference despite larger physical
amount in one milkshake) and partial physical non-dominance bundles
(higher revealed preference despite smaller physical amount in one milk-
shake). Three generalized linear models were used to fit bundles in low
versus middle, middle versus high, and low versus high comparisons,
respectively. The domination was defined as at least 0.2 ml more for
component A or at least 0.4 ml more for component B, as in GLM2. We
calculated the mean and standard error of the averaged b coefficients

Figure 3. Higher BOLD responses to more preferred (but physically partially dominated) bundles positioned on different ICs. A, Two examples of binary bundle comparison. Each pair of black
circles indicates one binary comparison in one participant. B, Brain regions activated more by preferred bundles compared with alternative bundles in group analysis with GLM2. Map threshold
p, 0.005, extent threshold� 10 voxels. For activations identified with the lower threshold of p, 0.001, see Extended Data Figure 3-1. C, Bar charts showing neural b coefficients of regres-
sion in ROIs of three brain structures in the population of 24 participants. Each group of bars (three groups in each ROI) shows the b coefficients for bundles in partial physically dominating
relationships on different ICs: low versus mid, mid versus high, and low versus high. Orange bars represent the higher preference level, and blue bars represent the lower preference level in
each comparison. The bars show the mean6 SEM. For activations at peak voxels, see Extended Data Figure 3-2.

/

6SEM. Yellow shaded boxes show analysis time window. Green asterisks p, 0.05, blue
asterisks p, 0.01 for t test of Spearman’s Rho against zero. The BOLD responses (input of
the Spearman’s rank analyses; with motion parameters regressed out) were extracted from
the peak voxels of each participant using with a leave-one-out procedure (see Materials and
Methods). D, Along-IC ROI activations. The Spearman’s rank analyses indicated hardly any
significance along same ICs in ROIs of the three brain structures shown in B. E, Bar charts of
neural b coefficients of GLM1 for the three IC levels in the three brain structures shown in
B in 24 participants. Bars show mean 6 SEM. F, Bar charts of neural b coefficients of
GLM1 for all five IPs on same IC levels (neural b coefficients were averaged across the three
IC levels in each participant) in 24 participants. Insignificant differences in one-way ANOVA:
striatum: p= 0.3845, F(4,115) = 1.05, midbrain: p= 0.6828, F(4,115) = 0.57; OFC: p= 0.5672,
F(4,115) = 0.74.
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across participants at time point 6 s and plot-
ted the bar chart as shown in Figure 3C.
Paired t tests were used to compare b coeffi-
cients between partial physical dominance
bundles and partial physical non-dominance
bundles. Motion parameters were also used as
regressors for each participant to eliminate
motion artefacts. In addition to extracting
BOLD signal with leave-one-out peaks of
GLM2 (Fig. 3C), we also extracted BOLD sig-
nal with leave-one-out peak from GLM1
(Extended Data Fig. 3-1) to confirm the
robustness of this analysis.

Reward prediction errors (RPEs)
The current task did not involve learning in
which reward would occur in a partly unpre-
dicted manner and thus elicit RPEs. The only
RPE could occur at the unpredicted time of
the first stimulus that explicitly and quantita-
tively predicted the reward amounts of the
bundle components indicated by the bundle
stimulus. Conceivably, in the simplest form,
the RPE would reflect the integrated reward
amounts of both bundle components relative
to the prediction derived from the past trial
history. There were three levels of bundle
stimulus corresponding to the three IC levels.
Thus, appearance of a given bundle stimulus
would elicit an RPE relative to the past experi-
enced bundles, weighted by the learning coef-
ficient. Thus, RPEs would have values around
�1, 0, and 11 for bundles located on low, in-
termediate and high ICs, respectively, the vari-
ation depending on the learning coefficient.
For comparison, the bundle stimulus at each
IC level without any RPE would have values of
1, 2 and 3, respectively. Thus, neural responses to the RPE and to the
stimulus directly (i.e., without subtraction of prediction) would result in
very similar regression slopes (depending on the learning constant used
for computing the RPE) and thus be difficult to distinguish from each
other. We modeled RPEs with various learning coefficients in the range
between 0.1 and 0.9 and for all values found high correlations between
RPE and bundle stimulus value at the three IC levels. For example, a
learning coefficient of 0.2 in a Rescorla–Wagner model resulted in a
Spearman’s rank correlation of 0.93376 0.00085 SEM (n= 15 bundles�
24 trials = 360 trials � 24 subjects pooled). For this reason, a RPE analy-
sis would not yield new insights and will not be further reported.

Results
Implementation of ICs
Participants (n= 24) chose between two visual stimuli in
repeated trials. Each of the two bundle stimuli represented a two-
component bundle that contained the same two milkshakes with
independently set amounts (Fig. 1A; see Materials and Methods).
Thus, we implemented choices between bundles with separate
objects (two milkshakes) rather than choices between single
objects that each had multiple components. Each stimulus con-
tained two colored vertical rectangles: the blue rectangle repre-
sented component A (low-sugar high-fat milkshake), the red
rectangle represented component B (high-sugar low-fat milk-
shake). In each rectangle, a vertically positioned bar indicated
the physical amount of each component milkshake, where higher
was more.

We examined choices between: (1) a preset reference bundle
and (2) a variable bundle whose component A had a fixed test

amount and whose component B varied pseudorandomly. In all
24 participants, choice probabilities followed the component B
monotonically. We obtained each IP (choice probability p= 0.5
for each bundle, indicating equal preference and same utility de-
spite different bundle composition) from a set of six-repetition
choices using a probit choice function (Eqs. 1, 1a). We thereby
obtained a two-dimensional IP that showed the amounts of the
two components of the variable bundle between which the par-
ticipant was indifferent against the constant reference bundle.
We repeated this procedure, keeping the reference bundle con-
stant and increasing the amounts of component A in the variable
bundle, thus obtaining a set of IPs. All IPs in such a set were
equally revealed preferred to, and thus had the same utility as,
the constant reference bundle.

In each participant, we estimated a total of three sets of IPs
(each containing five IPs) by presetting three different amounts
of component B (2, 5, or 8 ml with component A always 0 ml) in
the reference bundle. Each IP defined the trade-off between the
two components; it indicated how much of component B the
participant was willing give up to gain one unit of component A
without change of preference. We derived each IC from such a
set of five IPs by hyperbolic fitting (Eqs. 2, 2a; Fig. 1B,C). Taken
together, the IPs with the continuous ICs represented revealed
preferences in a systematic manner, thus implementing the basic
concepts underlying this study.

Behavioral validation of ICs
To assess the contribution and validity of IPs (bundles) to the
ICs obtained with hyperbolic fits, we performed a leave-one-out
analysis. The details of these behavioral analyses were presented

Figure 4. Activation in vmPFC during BDM bidding. A, Bar chart for BDM bids for 15 bundles of 24 participants (mean6
SEM). The colors of the bars indicate the ICs to which the bundle belongs (blue = low IC; green = middle IC; red = high IC).
Spearman’s rank correlation: across ICs: Rho = 0.5710, p= 1.5659� 10�32; within IC: Rho = 0.0219, p= 0.6791. Wilcoxon
signed-rank test: IC1 versus IC2: p= 1.2802� 10�20; IC2 versus IC3: p= 8.0748� 10�21; IC1 versus IC3: p= 1.5954�
10�19. B, vmPFC activation during bidding phase (GLM3: activation correlated with BDM bids; threshold p, 0.005, extent
threshold� 10 voxels). Spearman’s rank analysis (right) showed significant Rho coefficient across bids. For additional activa-
tion in dorsal striatum, see Extended Data Figure 4-1.
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before (Pastor-Bernier et al., 2020) and are repeated here for
completeness. Briefly, we left out (removed) one IP at a time
from the five IPs within one fitted IC (except for the reference
bundle at x = 0), and then we refitted the IC using the remaining
four IPs with the same hyperbolic equation (see Materials and
Methods; Eqs. 2, 2a). We performed the same kind of leave-one-
IP-out analysis separately for each IC in each participant (four
IPs on three ICs in 24 participants, resulting in 288 analyses in
total).

The refitted ICs resulted in consistent fits in four measures.
First, there was no overlap in the refitted IC with any refitted IC
at other levels in all 24 participants; thus, the IC levels retained
separation despite one IP being left-out. Second, there was no
overlap in the 72 refitted ICs with the 95% confidence intervals
of other original ICs at different levels; thus, the IC levels
retained separation despite one IP being left-out. Third, most
refitted ICs (92%, 66 of 72 ICs) still within the 95% confidence
intervals of the original ICs without the eft-out IPs, while the
remaining curves (8%, 6 of 72 ICs) showed only some parts of
the IC that fell outside the 95% confidence intervals; thus, indi-
vidual IPs were not overweighted in the ICs. Fourth, the left-out
IPs deviated only insignificantly from the refitted ICs (p= 0.98
with t test; N= 336; residual: 0.056 0.13 ml in all participants,
mean 6 SEM; Fig. 1D); this result confirmed that individual IPs
were not overweighted in the ICs. These four validations demon-
strated the robustness and consistency of the hyperbolically fitted
ICs in capturing the IPs. Thus, in all participants, the ICs pro-
vided valid representations of the three revealed preference
levels.

Neural responses for two-component bundles across and
along ICs
During fMRI scanning, the task started with a fixation cross last-
ing 0.5 s (Fig. 1E). Then, a single two-component visual stimulus
appeared in the center of the computer monitor (bundle-on
phase); the stimulus predicted delivery of one of the 15 bundles
(IPs) composed of two different milkshakes. The physical
amount of the milkshakes in the bundle was determined by the
participant-specific IP estimated from the binary choice task (see
above). The participant received the two bundle milkshakes with
the respective amounts indicated by the vertical bars on the stim-
ulus, without choice. That presentation was either followed by a
BDM task within the trial (50% of trials, pseudorandomly
selected) or terminated (50% of trials). The BDM bidding served
as a mechanism-independent measure of utility estimation, as
used before (De Martino et al., 2013; de Berker et al., 2019). In
total, each participant performed 360 trials (24 trials for each of
the 15 bundles). With the fMRI data we collected, we analyzed
the various aspects of neural responses (BOLD signals) to the
bundles with several GLMs and ROI analyses.

We first used GLM1 to identify brain responses that follow
the scheme of ICs, namely monotonic increase with higher ICs
(or decrease with inverse coding) and insignificant change along
the same ICs, as shown in Figure 2A. Thus, would BOLD signals
change monotonically with preference and utility across ICs but
vary insignificantly with choice indifference and same utility
along ICs? To do so, the individual contrast images (representa-
tion of BOLD signal) of each bundle in each participant were
grouped according to the IC the bundle belonged to (low, me-
dium, high) and the position of the bundle on each IC (1–5,
from top left to bottom right).

We used parametric statistical tests (t test with flexible facto-
rial design) and estimated neuroimages of responses to each of

the 15 bundles grouped into the three IC levels or five groups
along ICs (see Materials and Methods). We found that the stria-
tum, midbrain and OFC showed significantly increasing activa-
tion across increasing ICs (high . low IC; map threshold of
p, 0.005; t test) but insignificant variations along individual ICs
(exclusive mask map threshold of p, 0.005; Fig. 2B; Table 1; for
effect sizes, see Extended Data Table 1-1). More specifically, we
found small-volume corrected significance in the striatum (peak
at [10, 6, �4], z score = 3.27, 6-mm radius sphere, cluster-level
FWE corrected p=0.041), midbrain (peak at [4, �16, �12], z
score= 3.71, 6-mm radius sphere, cluster-level FWE corrected
p= 0.048) and OFC (peak at [22, 42, �16], z score = 3.67, 10-mm
radius sphere, cluster-level FWE corrected p= 0.037). (All small-
volume corrections in this study were centered on predefined
coordinates from the Neurosynth meta-analysis database, see
Materials and Methods). In addition, we found significant activ-
ities in other regions, including the insula and cingulate cortex
(Table 1). By contrast, we found significant BOLD changes
between bundles positioned on same ICs in a number of other,
mostly cortical regions (Extended Data Table 1-2). These
changes violated the IC scheme representing the trade-off
between the two bundle rewards and were not further explored.

To provide further evidence for neural activations following
the scheme of ICs, we performed a Spearman’s rank time course
analysis. We first extracted BOLD signals using leave-one-sub-
ject-out cross-validated GLM models, which should prevent
potential biases with preselected peaks (see Materials and
Methods). Subsequently we used the BOLD signals from peak
voxels in each left-out subject to perform Spearman’s rank analy-
ses. We found that the striatum, midbrain and OFC showed sig-
nificant Spearman’s rank correlation coefficients (Spearman’s
Rho) between bundles located on different ICs at around 6 s after
onset of the bundle stimulus (p, 0.05), consistent with the
standard time course of hemodynamic response (Fig. 2C). By
contrast, only insignificant (p. 0.05) rank coefficients were
found at 5–7 s between bundles located along same ICs in these
brain regions, as shown in the sliding-window analysis (Fig. 2D).
These time courses followed the revealed preference to bundles
across different ICs but failed to differ along the same IC, thus

Table 1. Brain regions activated across but not along ICs during bundle-on
phase (whole-brain analysis with GLM1)

Brain region Hemisphere
MNI peak
coordinates (x, y, z)

Peak
z score

Striatum* R 10, 6, �4 3.27
Midbrain* / 4, �16, �12 3.09
OFC* R 22, 42, �16 3.67
Parietooccipital transition
zone/occipital gyri

/ �12, �66, 46 7.42

Insular gyrus/basal operculum L �30, 18, 2 5.80
R 32, 26, �4 4.91

Superior frontal gyrus / �24, 2, 52 5.70
Middle frontal gyrus L �42, 2, 42 4.98

�40, 34, 18 4.74
R 44, 46, 16 4.94

Cingulate gyrus / �2, �24, 28 4.87
Precentral gyrus R 40, 6, 24 4.59
Angular gyrus L �22, �72, 54 3.89

Cluster p values (p, 0.05) with family-wise error correction across the whole brain. Map threshold
p, 0.005 (across ICs; high . low IC) with exclusive contrast map p. 0.005 (along ICs), extent
threshold� 10 voxels; *p, 0.05 with small volume correction correction (6-mm radius for striatum and
midbrain; 10 mm for OFC) using coordinates from Neurosynth meta-analysis database (see Materials and
Methods); / indicates activation close to and crossing the midline. For effect sizes, see Extended Data Table
1-1. For significant BOLD changes between bundles positioned on same ICs in other brain regions, see
Extended Data Table 1-2.

Seak, Volkmann et al. · Neural Processing of Two-Component Choice Options J. Neurosci., March 31, 2021 • 41(13):3000–3013 • 3009

https://doi.org/10.1523/JNEUROSCI.1555-20.2020.t1-1
https://doi.org/10.1523/JNEUROSCI.1555-20.2020.t1-2
https://doi.org/10.1523/JNEUROSCI.1555-20.2020.t1-1
https://doi.org/10.1523/JNEUROSCI.1555-20.2020.t1-1
https://doi.org/10.1523/JNEUROSCI.1555-20.2020.t1-2


complying with the scheme of ICs that represent revealed prefer-
ence. Moreover, we extracted b (slope) coefficients of the BOLD
signal at 6 s with the ROI coordinates identified by GLM1 and
plotted them for three revealed preference levels in bar charts
(Fig. 2E). We found a significant difference between high versus
low revealed preference level in the midbrain (p=0.0062), OFC
(p=0.0023), and marginal significant difference in the striatum
(p=0.0533). We also found a significant difference between high
versus middle revealed preference level in the OFC (p=6.8551�
10�4). By contrast, a one-way ANOVA analysis on the b (slope)
coefficients of the BOLD signal indicated insignificant differen-
ces between responses to five IPs positioned on same ICs in stria-
tum, midbrain and OFC (Fig. 2F). We used F contrasts as the
exclusive mask and found small volume corrected significance in
striatum (p= 0.041, 6-mm radius sphere) and OFC (p=0.037,
10-mm radius sphere) but only marginal significance in mid-
brain (p = 0.051, 6-mm radius sphere; Extended Data Fig. 2-1).
These activations were also confirmed with the lower threshold
of p, 0.001 (Extended Data Fig. 2-2, T contrast), with small vol-
ume corrected significance in striatum (p= 0.017, 6-mm radius
sphere), OFC (p=0.018, 10-mm radius sphere) and midbrain
(p=0.042, 8-mm radius sphere; no significance with 6 mm).

Taken together, these data indicate that activations in several
components of the brain’s reward system followed the basic
scheme of ICs representing revealed preferences: activation
across the ICs but no activation along the same IC.

Binary comparisons between partial physically non-
dominant bundles
According to the concept of ICs, any bundle on a higher IC (far-
ther from the origin) should be preferred to any bundle on a
lower IC. Hence, a single-dimensional neural signal reflecting
multicomponent choice options should vary between any bundle
on a higher IC and any bundle on a lower IC. To reflect the
proper integration of the two bundle components regardless of
specific physical properties, the neural signal should follow the
IC rank even when one component milkshake of the higher-IC
bundle is lower than in the lower-IC bundle (partial physical
non-dominance). To identify such differences, we used the
GLM2. With pairwise comparisons, GLM2 should identify
higher responses to revealed preferred bundles with partial phys-
ical non-dominance. Thus, GLM2 compared all bundle pairs
that fit the following condition within each participant: bundle 1
was located on higher IC but had a lower amount of one compo-
nent milkshake compared with bundle 2 that was located on a
lower IC (Fig. 3A).

The GLM2 analysis demonstrated significant activations in
similar regions as with GLM1, where striatum (peak at [16, 6,
�6], z score = 3.8, 6-mm radius sphere, cluster-level FWE cor-
rected p= 0.012), midbrain (peak at [4, �16, �12], z score= 2.85,
6-mm radius sphere, cluster-level FWE corrected p= 0.032) and
OFC (peak at [24, 42, �16], z score = 3.99, 10-mm radius sphere,
cluster-level FWE corrected p=0.012) showed small-volume cor-
rected significant activations (Fig. 3B). These activations were
also confirmed with the lower threshold of p, 0.001 (Extended
Data Fig. 3-1), with small volume corrected significance in stria-
tum (p= 0.008, 6-mm radius sphere) and OFC (p= 0.004, 10-
mm radius sphere). Also, we found significant activities in other
regions, including insula, superior frontal gyrus and cingulate, as
shown in Table 2.

We also performed ROI analyses (coordinates identified by
GLM2 with leave-one-subject-out procedure) that calculated
betas of partial physical non-dominance (higher revealed

preference) and partial physical dominance bundles (lower
revealed preference) as described in Materials and Methods. For
each ROI, we computed three models, which compared bundles
pairwise, with low versus middle, middle versus high, and low
versus high revealed preference, respectively. Neural b regres-
sion coefficients were extracted at 6 s after the onset of the bun-
dle stimulus, which corresponded to the canonical
hemodynamic response. In regard to high versus low revealed
preference level, we found significance in the striatum
(p=0.0459) and OFC (p=0.0033) when comparing bundles in
high IC versus low IC (Fig. 3C). We also found significance in
the striatum (p= 0.0309) and OFC (p=7.6575� 10�5) when
comparing high versus middle IC bundles. In the midbrain, we
found no significance (p. 0.05) in the three comparisons
between bundles on low, middle and high ICs (although such a
tendency existed in all three comparisons). When plotting Figure
3C using peak voxels from GLM1, we found similar results for
all three regions (Extended Data Fig. 3-2), which is unsurprising
as the coordinates were similar between GLM1 and GLM2.
Thus, the ROI analysis was robust with GLM1 coordinates for
these regions.

Taken together, these pairwise bundle comparisons demon-
strated neural coding of partial physical non-dominance bundles
as a necessary condition for extracting a scalar neural signal from
vectorial, multicomponent choice options. These results con-
firmed compliance with the graphic schemes of ICs demon-
strated with GLM1.

BDM control of revealed preference
To validate the order of revealed preferences represented by the
ICs with an independent estimation mechanism, we used a mon-
etary BDM bidding task that estimated each participant’s utility
for each bundle. In 50% of trials during fMRI scanning, each par-
ticipant made a monetary BDM bid (United Kingdom pence) for
one of the 15 bundles, out of a fresh endowment of 20 United
Kingdom pence in each trial (BDM bidding phase; Fig. 1E). The
15 bundles constituted the IPs of the ICs that were estimated
during the binary choice task with each participant.

The BDM bids followed the order of revealed preference
levels across ICs, as demonstrated by significant positive
Spearman’s rank correlation between the three IC levels and the

Table 2. Brain regions showing differences (partial physical non-dominance .
partial physical dominance) in BOLD signal between partial physically dominat-
ing bundles located on different ICs during bundle-on phase (whole-brain anal-
ysis with GLM2)

Brain region Hemisphere MNI peak coordinates (x, y, z) Peak z score

Striatum* R 16, 6, �6 3.8
Midbrain* / 4, �16, �12 2.85
OFC* R 24, 42, �16 3.99
Insular gyrus/basal operculum L �30, 24, �2 5.55

R 32, 26, �6 4.40
Angular gyrus R 32, �68, 28 5.51
Cerebellum L �36, �68, �30 4.79
Superior frontal gyrus / 22, 2, 54 4.75
Occipital gyri L �28, �88, 4 4.57
Middle frontal gyrus L �50, 40, 16 4.32

R 46, 42, 14 3.76
Inferior frontopolar gyrus R 18, 64, �8 4.11
Cingulate gyrus / �2, �24, 28 4.05

Cluster p values (p, 0.05) with family-wise error correction across the whole brain. Map threshold
p, 0.005, extent threshold� 10 voxels; *p, 0.05 with small volume correction correction (6-mm radius
for striatum and midbrain; 10 mm for OFC) using coordinates from Neurosynth meta-analysis database (see
Materials and Methods).
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bid amounts for bundles and confirmed with significant binary
Wilcoxon signed-rank tests between the three IC levels (Fig. 4A,
blue, green, red). By contrast, there was no correlation between
bids for the five bundles and their position along each IC (from
top left to bottom right; Spearman’s Rho= 0.0219; p=0.6791).
Thus, BDM bids increased across the three IC levels but did not
change monotonically with bundle position along individual ICs
in the population of our participants.

In order to investigate neural mechanisms of BDM bidding
and value elicitation, we compared two GLM models: (1) GLM3
to identify brain regions that encoded BDM bids (0–20 pence)
during the bidding phase, as shown in Figure 4B; (2) GLM1 to
identify brain regions that encoded value elicitation according to
IC levels during bundle-on phase, as shown above in Figure 2B,
C, far right.

Analysis with GLM3 demonstrated activation in ventromedial
prefrontal cortex (vmPFC) that encoded BDM bids during the
bidding phase (peak at [6, 44, 0], z score = 4.10, whole-brain cor-
rected with cluster-level FWE corrected p= 0.002; Fig. 4B, left),
together with other brain regions (Table 3). Further ROI analysis
showed significant rank correlation between vmPFC activation
and BDM bids at around 6 s after BDM cue onset (bidding
phase; p, 0.05; Spearman’s Rho; Fig. 4B, right), consistent with
the expected hemodynamic response function. By contrast, anal-
ysis with GLM1 showed significant, small-volume corrected acti-
vation in OFC that indicated its involvement in encoding IC
levels during the bundle-on phase (Fig. 2B, far right). The ROI
analysis showed significant rank correlation between OFC acti-
vation and IC levels at around 6 s after bundle onset (bundle-on
phase; p, 0.05; Spearman’s Rho; Fig. 2C, far right). In addition,
with GLM3, we found small-volume corrected significant encod-
ing of BDM bids in the dorsal striatum (peak at [12, 12, 0], z
score = 3.53, 6-mm radius sphere, cluster-level FWE corrected
p=0.008; Extended Data Fig. 4-1), whereas BDM encoding was
insignificant in the ventral striatum (p. 0.1).

Taken together, BDM bidding provided a good validation of
the estimated levels of revealed preference represented by ICs.
However, and interestingly, revealed preference levels and BDM
bids were encoded in different regions of the frontal cortex and
striatum.

Discussion
We systematically tested characteristics of scalar neural responses
to vectorial, multicomponent bundles. We estimated IPs by ask-
ing human participants to choose between two bundles. Each
bundle contained the same two separate objects (milkshakes)
rather than consisting of single objects that each had multiple
components. Our behavioral results (Pastor-Bernier et al., 2020)
showed that preference relationships among multicomponent
choices were reliably represented by systematic ICs, as a prereq-
uisite for testing the underlying neural mechanisms. In fMRI
scans with GLM and post hoc ROI analyses, we identified brain
regions whose activations correlated with levels of revealed pref-
erence. The GLM1 and post hoc Spearman’s rank analysis dem-
onstrated activations in the ventral striatum, midbrain and OFC
that reflected revealed preference levels across ICs (changing util-
ity) but failed to vary along equal-preference ICs (same utility de-
spite different bundle composition). The GLM2 specifically
dissociated revealed preference from physical dominance and
showed consistent results with those from GLM1. A mechanism-
independent control with a BDM bidding task confirmed the va-
lidity of ICs for representing revealed preference levels.

Interestingly, however, BDM bidding was associated with activa-
tions in vmPFC and dorsal striatum rather than the previously
identified reward structures following IC levels. Together, these
data demonstrate systematic, single-dimensional neural activa-
tions in the striatum, midbrain and OFC that reflect preferences
for, and utility of, vectorial multicomponent choice options.

Scalar neural activations from vectorial choice options are only
the simplest way to represent value integrated from multiple com-
ponents. Other plausible but less straightforward ways might be
ensemble coding composed of multiple heterogeneous signals rep-
resenting only single components of multicomponent options, as
seen in individual OFC neurons (Pastor-Bernier et al., 2019).
Future neuroimaging studies may address such issues.

In our binary choice task, we elicited revealed preferences
with repeated, psychophysically controlled choices (Green and
Swets, 1966; Pastor-Bernier et al., 2020). Such a multitrial, sto-
chastic approach is well conceptualized (McFadden and Richter,
1990; McFadden, 2005), fulfils statistical requirements of neural
research, corresponds to standard choice functions (Sutton and
Barto 1998), and allows comparison with animal neurophysiol-
ogy (Pastor-Bernier et al., 2017). These methods delivered vary-
ing choice probabilities (stochastic choices) instead of single
selections (deterministic choices).

Economic choice experiments often involve substantial but
imaginary sizes or amounts of consumer items and money, or
use random singular payouts (Simonson, 1989; Tversky and
Simonson, 1993; Rieskamp et al., 2006). By contrast, our payout
schedule fit the requirements of neuroimaging and involved tan-
gible and consumable rewards over hundreds of trials, while also
controlling for satiety. The behavioral choices resembled small
daily activities, such as drink and snack consumption. In this
way, we obtained three well-ordered ICs for each participant that
provided accurate and systematic representations of preferences
for multicomponent bundles, without involving imagined items
or monetary reward (Pastor-Bernier et al., 2020).

We used the BDM task as an authoritative, mechanism-inde-
pendent control for eliciting subjective values, thereby providing
an additional validating mechanism for the revealed preferences
elicited in our binary choice test. The value estimating mecha-
nism for BDM bids differs substantially from the one for revealed
preference ICs. The truthful revelations (incentive compatibility)
of BDM makes this mechanism an essential tool in experimental
economics that is becoming more popular in human decision
research (Plassmann et al., 2007; Medic et al., 2014;

Table 3. Brain regions with BOLD responses correlating with BDM bids during
the bidding phase (whole-brain analysis with GLM3)

Brain region Hemisphere
MNI peak
coordinates (x, y, z)

Peak
z score

vmPFC / 6, 44, 0 4.10
Dorsal striatump R 12, 12, 0 3.53
Insular gyrus/basal operculum R 30, 24, �2 5.21
Inferior frontal gyrus, opercular part R 46, 8, 22 4.76
Occipital gyri L �36, �90, �2 4.67
Superior parietal lobule L �30, �56, 46 4.14
Superior frontal gyrus / 2, 26, 42 4.05
Middle frontal gyrus R 38, 36, 18 3.93
Postcentral gyrus R 32, �36, 48 3.62
Inferior frontopolar gyrus R 22, 56, �4 3.53

Cluster p values (p, 0.05) with family-wise error correction across the whole brain. Map threshold
p, 0.005, extent threshold� 10 voxels; pp, 0.05 with small volume correction (6-mm radius) using
coordinates from a previous study with BDM bidding (De Martino et al., 2009; see Materials and Methods).
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Zangemeister et al., 2016). The elicited BDM bids correlated well
with the revealed preference levels (Pastor-Bernier et al., 2020)
and thereby validated in a mechanism-independent manner the
empirically estimated IPs used during fMRI (in which the partic-
ipants performed the BDM task). Previous neuroimaging studies
showed activations in vmPFC that correlated with BDM bids
(Chib et al., 2009; McNamee et al., 2013). Our experimental
design dissociated value elicitation by bundles and by BDM bid-
ding. We confirmed the BDM activations in vmPFC and found
that the two mechanistically different tasks activated different
regions in both PFC and striatum; responses to the bundles fol-
lowed the IC scheme (different activations across but not within
ICs) in OFC and ventral striatum, whereas BDM bidding acti-
vated vmPFC and dorsal striatum. Previous studies showed that
vmPFC activity can reflect value derived from both rating meas-
ures and can distinguish between preferred and non-preferred
options regardless of task demands (Lebreton et al., 2009; Lopez-
Persem et al., 2020). Thus, the conditions under which vmPFC
encodes value, and the precise form of value-elicitation that best
explains vmPFC activity are valuable topic for future studies.

Previous studies tested neural mechanisms of human choice
of bundles with multiple components, such as payoff amount
and probability (Chau et al., 2014), quality and quantity of goods
(de Berker et al., 2019), money and time (Gluth et al., 2017), and
food components (Suzuki et al., 2017). Nevertheless, none of
these studies tested bundles that were positioned along modeled
ICs (i.e., eliciting choice indifference) and thus failed to test the
crucial trade-off that demonstrates the graded and well-ordered
manner of single-dimensional preferences for multidimensional
choice options. Without this information, we would not know
how a scalar neural response may arise from graded changes of
vectorial, multicomponent bundles. Our study, testing five bun-
dles on each IC, addressed this problem and identified the brain
regions that showed this kind of neural response.

Although we tested the emergence of single-dimensional neu-
ral signals for multidimensional bundles in a systematic and con-
cept-driven way, there were limitations with our experimental
design. First, both bundle components had the same type of pri-
mary reward (milkshakes). It would be interesting to study
whether the same brain regions would encode different types of
rewards and follow the formalisms of ICs, including the graded
trade-off. For instance, future research may compare monetary
rewards with primary nutrient rewards. Second, we only demon-
strated neural responses with the typical convex ICs. It would be
interesting to study whether different brain regions might encode
preferences with different shapes of ICs. Such work may test par-
ticipants’ choices with linear or concave ICs. Third, we did not
test the influences of prior experience on current decisions.
Previous studies (Schultz, 1998; van den Bos et al., 2013; Lopez-
Persem et al., 2016) showed that choices could be influenced by
previous experience and be updated by reinforcement learning.
Future research may include multicomponent choice options
during fMRI scanning to study multicomponent reinforcement
learning. Lastly, we only demonstrated fMRI BOLD responses,
and future neurophysiology research should confirm the coding
of revealed preference at a single neuron level in human patients
with intracerebrally implanted electrodes, similar to our recently
investigated neuronal encoding of revealed preference in monkey
OFC (Pastor-Bernier et al., 2019). To conclude, while we showed
brain activation with bundles in a formal but standard revealed
preference setting (convex ICs, primary reward), it is desirable to
know how human brains encode revealed preference in a larger
variety of situations.

The reward circuit including the striatum and midbrain is
known to participate in reward anticipation and learning, includ-
ing RPE (Diederen et al., 2017). In monkeys, midbrain dopamine
neurons encode values for predicted rewards in economic deci-
sion tasks (Lak et al., 2016; Schultz et al., 2017). Similar to the
midbrain and striatum, previous work showed the involvement
of the human mid-OFC in valuation of primary nutrient reward
(Grabenhorst et al., 2010) and monetary reward (Kahnt et al.,
2014). Remarkably, the neural activity in OFC elicited here, in
response to visual cues predicting liquid rewards with varying
sugar and fat components, closely matched the coordinates
observed previously (Grabenhorst et al., 2010) in a study in
which subjects orally sampled very similar liquid rewards. Thus,
this area of OFC seems to be involved both in reward valuation
during oral consumption of primary nutrient rewards and in the
economic valuation of visually cued choice options. In non-
human primates, OFC neurons encode reward prediction
(Tremblay and Schultz, 1999; Padoa-Schioppa and Assad, 2006)
and follow revealed preferences for multicomponent bundles
(Pastor-Bernier et al., 2019). In the current study, we used a con-
cept-driven design and found that neural responses in the stria-
tum, midbrain and OFC integrated multiple bundle components
in a way that followed the ICs scheme (changing across ICs but
being similar along equal-preference ICs). Moreover, we demon-
strate the involvement of the midbrain in multicomponent deci-
sion-making for the first time. Overall, our results show the
involvement of principal reward structures of the brain in inte-
grating the multiple components of vectorial bundles into single-
dimensional neural signals that are suitable for economic deci-
sion-making.

Besides the primary reward circuit (midbrain dopamine neu-
rons, OFC, striatum, amygdala), other brain regions are also
involved in economic decision-making. Previous studies in mul-
ticomponent decision-making suggested the involvement of the
cingulate, PFC, and insula in value elicitation (Kurtz-David et al.,
2019; Busemeyer et al., 2019). Consistent with these studies, we
also found significant activation in these regions. As shown in
Tables 1, 2, the BOLD signals identified by GLM1 and GLM2
showed that these regions also encode bundle values during the
bundle-on phase, together with the striatum, midbrain, and mid-
OFC. Our results are consistent with these previous studies, sug-
gesting that a considerable number of brain regions also play a
role in multicomponent decision-making.
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Figure 2-1. BOLD responses discriminating bundles between indifference curves (ICs) identified with F contrast (map 
threshold p < 0.005, extent threshold ≥ 10 voxels, high>low), but no discrimination between bundles along same ICs 
(map threshold p > 0.005; i.e. exclusive mask for brain response to bundles on same ICs with threshold p=0.005) in a 
group analysis. OFC: orbitofrontal cortex. 
 

                           
 
Figure 2-2. BOLD responses discriminating bundles between ICs with lower threshold (map threshold p < 0.001, extent 
threshold ≥ 10 voxels, high > low), but no discrimination between bundles along same ICs with T contrast (map 
threshold p > 0.005; i.e. exclusive mask for brain response to bundles on same ICs with threshold p=0.005) in a group 
analysis. Svc: small volume corrected. 
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Figure 3-1.  Higher BOLD responses to more preferred (but physically partially dominated) bundles positioned on 
different indifference curves with stricter thresholds (Map threshold p < 0.001, extent threshold ≥ 10 voxels) in striatum 
(left) and OFC (right). 
 

                
 
Figure 3-2. Bar charts showing neural beta coefficients of regression at peak voxels in ROIs (with ROIs coordinate 
extracted from GLM1 using leave-one-out procedure) of three brain structures in the population of 24 participants. Each 
group of bars (3 groups in each ROI) shows the beta coefficients for bundles in partial physically dominating 
relationships on different indifference curves (IC): low vs. mid; mid vs. high and low vs. high. Orange bars represent 
the higher preference level and blue bars represent the lower preference level. The bars show the mean ± SEM. 
 

                            
 
Figure 4-1. Dorsal striatum activation during bidding phase (GLM3: activation correlated with the amount of BDM 
bids; threshold p < 0.005, extent threshold ≥ 10 voxels). Brain map (left) shows dorsal striatum activity during bidding 
phase. Spearman rank analysis (right) showed significant Rho coefficient across bids during bidding phase in dorsal 
striatum. 
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Table 1-1. Effect sizes for BOLD responses to bundles positioned across and along indifference 
curves (IC) in striatum, midbrain and OFC (GLM1). 
 
 Preference 

(different utility) 
Choice indifference 

(same utility) 
Brain region Effect across ICs Effect along ICs  

(T statistics) 
Effect along ICs  
(F statistics) 

Striatum Z = 3.27 
p = 0.041 

N/A (Fat) 
N/A (Sugar) 

N/A 

Midbrain Z = 3.09 
p = 0.048 

N/A (Fat) 
N/A (Sugar) 

N/A 

OFC Z = 3.67 
p = 0.037 

Z = 2.77, p = 0.188 (Fat) 
N/A (Sugar) 

N/A 

 
P values refer to small volume corrected BOLD signal (6mm radius for striatum and midbrain; 
10mm for OFC) using coordinates from Neurosynth (see Methods). Map threshold P < 0.005, 
extent threshold ≥ 10 voxels. Z: peak z-score. Threshold p = 0.005 with extent threshold ≥ 10 
voxels, tested with small volume correction. N/A: no cluster of voxels met the statistical criteria.  
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Table 1-2. Brain regions activated along indifference curves (ICs) during bundle-on phase (whole-
brain analysis with GLM1 F contrast along ICs).  
 

Brain region Hemisphere MNI peak coordinates (x,y,z) peak z-score 

Striate area / 2, -86, 6 >8 

Inferior frontal gyrus, orbital part/ 
Lateral OFC R 46, 50, -2 4.63 

Inferior frontal gyrus, triangular part R 56, 16, 0 4.14 

Middle temporal gyrus R 64, -24, -18 4.41 

Superior frontal gyrus, medial part / 4, 38, 26 4.37 

Supramarginal gyrus R 48, -50, 42 4.31 

Inferior temporal gyrus L -32, -78, -16 3.86 

Superior temporal gyrus L -56, -46, 40 3.74 

 
Cluster P values (P < 0.05) with family-wise error correction across the whole brain. Map threshold 
P < 0.005 (along ICs), extent threshold ≥ 10 voxels. '/' indicates activation close to and crossing the 
midline. 
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