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A B S T R A C T   

This study investigated how the experience of different reward distributions would shape the utility functions 
that can be inferred from economic choice. Despite the generally accepted notion that utility functions are not 
insensitive to external references, the exact way in which such changes take place remains largely unknown. 
Here we benefitted from the capacity to engage in thorough and prolonged empirical tests of economic choice by 
one of our evolutionary cousins, the rhesus macaque. We analyzed data from thousands of binary choices and 
found that the animals’ preferences changed depending on the statistics of rewards experienced in the past (up to 
weeks) and that these changes could reflect monkeys’ adapting their expectations of reward. The utility functions 
we elicited from their choices stretched and shifted over several months of sequential changes in the mean and 
range of rewards that the macaques experienced. However, this adaptation was usually incomplete, suggesting 
that – even after months - past experiences held weight when monkeys’ assigned value to future rewards. Rather 
than having stable and fixed preferences assumed by normative economic models, our results demonstrate that 
rhesus macaques flexibly shape their preferences around the past and present statistics of their environment. 
That is, rather than relying on a singular reference-point, reference-dependent preferences are likely to capture a 
monkey’s range of expectations.   

1. Introduction 

It is generally assumed that adaptation to current statistical distri
butions of physical events enables efficient processing by systems with 
limited dynamic range. Adaptation improves discrimination, increases 
effective working range, and maximizes information processing. The 
phenomenon has been particularly well investigated in biological sys
tems; sensory neurons of all modalities adapt their sensitivity to the 
environment (Barlow, 1961; Laughlin, 1981; Heeger, 1992; Fairhall, 
Lewen, Bialek, & De Ruyter van Steveninck, 2001; Hosoya, Baccus, & 
Meister, 2005; Maravall, Petersen, Fairhall, Arabzadeh, & Diamond, 
2007). Rewards and economic objects are no exception: although stan
dard economic theories deal with economic outcomes as if their utility 
were independent of anything other than the object itself (Von Neumann 
and Morgenstern, 1944; Luce, 1959), empirical studies of economic 
choice reveal a number of phenomena suggestive of adaption, including 
the reference dependency of Prospect Theory (henceforth PT, Kahneman 
& Tversky, 1979; Tversky & Kahneman, 1992) and the violation of the 
independence axiom (Tversky & Simonson, 1993; for review, see Rie
skamp, Busemeyer, & Mellers, 2006). 

Specifically, PT posits that we optimize our decisions by calculating 

the value of our choices relative to a reference-point (Tversky & Kah
neman, 1986). That is, rather than objectively evaluating the outcome of 
our choices, we perceive our options as gains or losses depending on 
what we are expecting: if an outcome is better than our reference, we 
treat it as a gain; if it is worse, we treat it as a loss. Mathematically, PT 
represents this behavior with an S-shaped value (or utility) function 
where the subjective value of gains and losses is given by concave and 
convex parts of the function, respectively. This has important behavioral 
consequences, particularly for risky-decision-making, as this normative 
(utility) framework predicts that people’s tendency towards risk averse 
or risk-seeking decisions depends on their perception of outcomes as 
being gains or losses. 

While the idea of reference-dependence has been readily adopted by 
modern decision theory (Rabin, 2000; Wakker, 2010), economists are 
still unclear about how reference points form (Barberis, 2012). In PT, 
Kahneman and Tversky abstractly define reference-points as exogenous 
from the decisions being made. That is, the reference point is not directly 
explained by PT and can be shaped by “aspirations, expectations, norms, 
and social comparisons” (A. Tversky & Kahneman, 1991, p.157). Alter
natively, recent economic models consider reference points an epiphe
nomenon of the way our mind adapts to the statistics of the task at hand 
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(Delquié & Cillo, 2006; Köszegi & Rabin, 2006; Sugden, 2003) - a 
framework more in line with the findings that, far from being restricted 
to human reasoning, reference-dependence is a homogeneous feature of 
primate decision-making and the brain (Carandini & Heeger, 2012; 
Louie, Khaw, & Glimcher, 2013; Padoa-Schioppa, 2009; Santos & 
Rosati, 2015; Tremblay & Schultz, 1999). Along these lines, one 
particularly interesting proposal from the epiphenomenon framework is 
that of range-dependent utility, or RDU (a play on reference-dependent 
utility; see Kontek & Lewandowski, 2018). Inspired by psychology’s 
range-frequency theory (Parducci, 1965, 2012) and neurobiology’s effi
cient-coding hypothesis (Laughlin, 1981; Summerfield & Tsetsos, 2015), 
RDU suggests that decision-makers evaluate the value of their options 
relative to not one, but two reference points: the minimum and 
maximum rewards available in any given scenario. In this view, what PT 
identifies as a reference-point could be nothing more than the product of 
a utility function that adapts to the distribution of possible rewards: the 
point at which a sigmoidal curve inflects from convex to concave (and a 
shape akin to a neuron’s tuning curve; Carandini & Heeger, 2012; 
Webster, Werner, & Field, 2005). 

Because studies on reference-dependence generally focus on identi
fying a unique reference-point (Baillon et al., 2015), or on describing 
behaviors under specific reference predictions ((Allen et al., 2016); 
Crawford & Meng, 2011; Wenner, 2015), there is, as of yet, no way of 
corroborating or contradicting the previous hypotheses on the emer
gence of reference-points. The few studies that consider shifts in pref
erences generally do so in the context of a specific reward distribution 
and on the timescale of laboratory choice experiment: that is, they 
document reference-point changes following the wins or losses of risky 
gambles ((Arkes, Hirshleifer, Jiang, & Lim, 2008, 2010); Shi, Cui, Yao, & 
Li, 2015); never the impact that changes in expectation have on 
decision-making over days, weeks, or months. Concurrently, little is 
known about the impact of a task’s structure on preferences, nor how 
different reward statistics might translate to different reference-points 
and utility functions. 

This study addresses the above gap by investigating the formation of 
reference-dependent utility in our close relative the macaque monkeys. 
Macaques are evolutionarily comparable to humans, and our laboratory 
setting allowed for repeated testing with much larger trial numbers and 
longer periods of experimentation. Most importantly, since monkeys 
acquire knowledge about rewards via experienced outcomes rather than 
from verbal or written instructions, behavioral measurements exclude 
potential confounds from language and higher numerical ability. Thus, 
we investigated how the distribution of rewards experienced in a binary 
choice task - defined on different reward magnitudes and spreads - 
shaped the reward preferences of rhesus macaques (a species that dis
plays many, if not most, of the fundamental choice patterns that humans 
display; Heilbronner & Hayden, 2013, 2016; Stauffer, Lak, Bossaerts, & 
Schultz, 2015). 

We presented macaques with several sets of risky choice options in 
which the distribution of reward magnitudes remained stable for weeks 
at a time, then suddenly shifted to a new distribution (higher/lower 
magnitudes or wider/narrower spread). On each testing day, we fit the 
animals’ choices with S-shaped utility functions that could explain both 
risk-seeking and risk averse choices (Genest, Stauffer, & Schultz, 2016; 
Stauffer, Lak, & Schultz, 2014). We then looked at how the animal’s risk 
preferences changed as a function of the reward distribution they 
experienced. We found that, while utilities stayed relatively put for 
periods during which a single reward distribution was experienced, the 
animals consistently shifted their preferences when a novel reward 
distribution was introduced. Specifically, the shape of estimated utility 
functions reflected the lowest and highest rewards that the monkeys had 
experienced over the course of the preceding weeks – doing so even if 
those rewards were now not a possibility. From these findings, we 
suggest that - far from being fixed and abstract – the utility functions 
estimated from monkeys’ choices reflect preferences that change and 
adapt given the knowledge that these animals accumulate over time. A 

functional ‘reference’ for our monkeys, therefore, likely captures the 
range of one’s expectations rather than a singular, context-specific 
value. 

2. Methods 

2.1. Animals 

Three male rhesus macaques (Macaca mulatta) weighing 11.2, 15.3, 
and 13.2 kg (Monkeys A, B, and C, respectively) participated in this 
experiment. All animals used in the study were born in captivity, at the 
Medical Research Council’s Centre for Macaques (CFM) in the UK. The 
animals were pair-housed for most of the experiment; monkeys B and C 
shared an enclosure. The animals ranged in age from 5 to 8 years old, 
and all subjects had previous experience with the visual stimuli and 
experimental setup (Ferrari-Toniolo, Bujold, & Schultz, 2019). 

This research has been ethically reviewed, approved, regulated, and 
supervised by the following institutions and individuals in the UK and at 
the University of Cambridge (UCam): the UK Home Office implementing 
the Animals (Scientific Procedures) Act 1986 with Amendment Regu
lations 2012 and represented by the local UK Home Office Inspector, the 
UK Animals in Science Committee, the UK National Centre for 
Replacement, Refinement, and Reduction of Animal Experiments 
(NC3Rs), the UCam Animal Welfare and Ethical Review Body (AWERB), 
the UCam Biomedical Service (UBS) Certificate Holder, the UCam 
Welfare Officer, the UCam Governance and Strategy Committee, the 
UCam Named Veterinary Surgeon (NVS), and the UCam Named Animal 
Care and Welfare Officer (NACWO). 

2.2. Behavioral task and training 

Rhesus macaques are the most commonplace species of non-human 
primates found in scientific research (Capitanio & Emborg, 2008). 
There is thus a rich literature reproducing human economic choices with 
them, the most relevant for us being that rhesus macaque choices can be 
successfully modeled using PT (Farashahi, Azab, Hayden, & Soltani, 
2018; Ferrari-Toniolo et al., 2019; Genest et al., 2016; Stauffer et al., 
2015). In addition, macaque experiments allow us to control the pre- 
and post-experimental environments in ways not possible for human 
studies – we can ensure that experimental variables are independent of 
rewards and choices made outside of the experiment (Chen, Lakshmi
narayanan, & Santos, 2006). 

Each animal used a left-right joystick (Biotronix Workshop, Univer
sity of Cambridge) to make choices between reward-predicting stimuli 
presented on a computer screen. After each choice, the animals received 
their chosen reward in the form of a specific blackcurrant juice quantity 
delivered probabilistically (matching the probabilities indicated by each 
stimulus). Importantly, although the animals were familiar with the 
blackcurrant juice used as a reward (which they sometimes received in 
their home cage in quantities of 20–50 ml), the environment, form, and 
quantity of reward delivery differed between the laboratory and the 
home cage to avoid generalization of reward quantities. In the former, 
experimental rewards were delivered in the experimental laboratory via 
a fixed spout in front of the mouth with well-controlled sub-milliliter 
quantities. 

The animals were presented with a simple visual stimulus consisting 
of one or two horizontal lines positioned inside a frame of two vertical 
lines depicting reward options that varied both in magnitude (i.e. liquid 
quantities, ml) and in the probability of a reward being delivered. 
Reward magnitudes were represented by the vertical position of the 
horizontal lines on the screen, whereas reward probability was repre
sented by the length of the horizontal lines inside the framing lines 
(Fig. 1a). Safe (riskless) options were represented by singular full-width 
horizontal lines that touched both sides of the frames, whereas gambles 
with multiple risky rewards were represented by multiple horizontal 
lines within the vertical frame. 
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The animals were trained to associate these two-dimensional visual 
stimuli with blackcurrant juice rewards over the course of >10,000 
single-outcome, imperative trials. In these trials, a single reward option 
was presented on either the left or right side of the screen. To obtain the 
cued reward, the animals were required to select the side on which the 
reward was presented. After imperative training, where only one option 
was presented, all experimental data were gathered within a binary 
choice paradigm in which the animals chose one of two reward options 
presented simultaneously. One option was always a gamble; the other 
was always a safe, guaranteed reward. Every choice trial began with a 
white cross at the center of a black screen, followed by the appearance of 
a joystick cursor. To initiate a trial the animal had to move the joystick 
cursor to the center cross and hold it there for 0.5–1 s. After a successful 
central hold, two reward options appeared to the left and right of the 

central cross (Fig. 1a). The animal had 3 s to convey its decision by 
moving the joystick to the side of its choice and holding it there for 0.1 s 
to 0.2 s, after which time the unselected option would disappear. The 
selected option remained on the screen for 1 s after reward delivery to 
strengthen any stimulus-reward associations with visual feedback. A 
variable intertrial period of 1–2 s (blank screen) preceded the next trial. 
Errors were defined as trials with an unsuccessful central hold, trials in 
which the animal failed to hold the selected side for the time required, or 
trials in which the animal made no choices. These error trials resulted in 
a timeout of 6 s, after which time the trial was repeated. 

Reward options were presented in pseudorandom alternation on the 
left and right sides of the computer screen to control for any side pref
erence. Event times were sampled at 2 kHz and stored at 1 kHz on a 
Windows 7 computer running custom MATLAB software (The 

Fig. 1. Experimental design and timescale. 
a) Binary choice task. The animals chose one of two gambles with a left-right motion joystick. They received the blackcurrant juice reward associated with the chosen 
stimuli after each trial: the reward’s magnitude and probability of delivery were signaled by the vertical position and width of a horizontal line as set between two 
vertical ones. Times, in seconds, indicate the duration of each of the task’s main events. 
b) Experimental reward distributions. Choices were made in one of three experimental reward distributions. In the low distribution, choice options had juice 
magnitudes set between 0 ml and 0.5 ml during preference elicitation sequences. The high distribution involved juice magnitudes set between 0.5 ml and 1.0 ml 
during preference elicitation sequences (unique to Monkey A and B). The full distribution was set between 0 ml and 1.0 ml for Monkeys A and B and set between 0.1 
ml and 1.3 ml for Monkey C. 
c) Monkeys’ experienced specific reward distributions for consecutive days. Vertical lines represent the daily experimental session, in their tested order; the height of 
these lines signals the reward distribution tested (blue, low distribution; yellow, full distribution; green high distribution). Black dots indicate the mean magnitude of 
all rewards experienced on the day, the white dots represent the standard deviation on the mean. (For interpretation of the references to colour in this figure legend, 
the reader is referred to the web version of this article.) 
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MathWorks, 2015a; Psychtoolbox version 3.0.11), and all further ana
lyses were done using custom Python code (Python 3.7.3, Scipy 1.2.1, 
Oliphant, 2007). Over the course of 63, 43, and 57 sessions an average of 
259 ± 154 (mean ± sd) trials, 317 ± 118 trials, and 131 ± 75 trials were 
collected for Monkeys A, B, and C, respectively. Crucially, animals 
received the reward they selected after each trial. This ensured that they 
experienced the rewards they selected with minimal and constant delay, 
and contrasts with human studies where only a randomly selected subset 
of trials are rewarded at the end of experimental sessions. Delivering 
rewards after every trial also allowed us to capture preferences that were 
contingent on experiences unique to the task - similar delivery methods 
and reward amounts were not experienced in the housing environment. 

2.3. Measuring preferences for specific reward distributions 

To examine the degree to which preferences are shaped by available 
rewards, binary choice data were collected from choices between 
reward options affixed to different reward distributions (Fig. 1b). Three 
reward distributions were defined in terms of their mean reward 
magnitude and the spread of possible options i) low-narrow distribution, 
where tested magnitudes were generally set between 0 ml and 0.5 ml; ii) 
high-narrow distribution, with magnitudes between 0.5 ml and 1.0 ml; 
and iii) full distribution, with magnitudes between 0 ml and 1.0 ml (0.1 
to 1.3 ml for Monkey C). Importantly, every reward outcome (no matter 
which distribution) was repeated the same number of times for each 
session – thus, every reward was equiprobable (flat distribution). We set 
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Fig. 2. Estimating certainty equivalents and utility functions. 
a) Basic choice behavior and estimation of certainty equivalents. Animals chose between a safe reward and a gamble on each trial. The safe rewards alternated 
pseudorandom on every trial – never going above or below the highest and lowest magnitudes tested in the daily reward distribution. Each point is a measure of 
choice ratio: the animal’s probability of choosing the gamble option over various safe rewards. We fit psychometric softmax functions (Eq. (1)) to these choice ratios, 
separately for each day, and recorded the certainty equivalent (CE) of individual gambles as the safe magnitude for which the probability of either choice would be 
0.5 (black arrow). The dashed vertical line indicates the expected value (EV) of the gamble represented in the box. 
b) Estimation of utility using the stepwise, fractile method. In step 1, the animals were presented with an equivariant gamble comprised of the maximum and 
minimum magnitudes in the tested reward distribution. The CE of the gamble was estimated and assigned a utility of 50%. In step 2, two new equivariant gambles 
were defined from the CE elicited in step 1. The CEs of these gambles were elicited and assigned a utility of 25% and 75%. Two more gambles are defined in step 3, 
from the CEs elicited in step 2. Their CEs were then assigned a utility of 12.5% and 87.5%. Parametric utility functions, anchored at 0 and 1, were fitted on these 
utility estimates (see methods). 
c) Equivariant, equiprobable gambles presented in out-of-sample validation sequences. Sets of four gambles, unique to each reward distribution, were used to 
validate the risk attitudes predicted by the DCM-derived utilities. The CEs of these gambles were measured (see panel a) and the difference between CEs and the 
specific gambles’ EVs signaled the animals’ risk attitudes: if the difference was positive, the animals were risk-seeking, if the difference was negative, the animals 
were risk averse. 
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distributions and kept them fixed for multiple weeks, measuring the 
effects of reward distribution over weeks rather than across blocks of a 
single experimental session (Fig. 1c). Monkey A experienced a low dis
tribution for 22 days (0 ml to 0.5 ml), a full distribution of rewards for 
31 days (0 ml to 1.0 ml), and a high distribution of rewards for 17 days 
(0.5 ml to 1.0 ml). Monkey B experienced the low distribution for 33 
days, then 19 days of high distribution, followed by 18 days of full 
distribution. Monkey C, quite uniquely, offered a dataset with a longer 
timescale. He experienced the full distribution of 0.1 ml to 1.3 ml of 
reward for 14 days then switched to a low distribution of 0 ml to 0.5 ml 
for 54 weeks. After this, his preferences were measured over 43 days. 

Utility functions were estimated for each reward distribution by 
presenting individual animals with a series of choices between a safe 
reward (probability of reward, p = 1.0) and a binary, equiprobable 
gamble (each reward p = 0.5) from which Von Neumann–Morgenstern 
type utilities were estimated. For our choice paradigm (i.e. the unique 
choices and the order in which they were presented), we used the 
fractile-bisection procedure (Machina, 1987). This involves successively 
dividing the distribution of possible utilities into progressively smaller 
halves (or fractals) and estimating at each step the magnitude of safe 
reward at which choices were indifferent against the specific gamble 
being tested, as done in our laboratory before (Genest et al., 2016; 
Stauffer et al., 2014). The resulting magnitude is termed certainty 
equivalent (CE) and represents the subjective value of the safe reward 
that is equivalent to the value of the gamble. 

The first step of the procedure involved presenting the animals with 
choices between this gamble and varying safe rewards (in 0.05 ml in
crements); in these choices, the safe reward that was equivalent to the 
gamble in utility terms was identified (i.e. the safe reward chosen in 
equal proportion to the gamble; see Fig. 2a, b). To estimate this safe 
reward, the following logistic sigmoid curve was fitted to the proportion 
of safe choices versus gambles for each of the gamble/safe pairing: 

PChooseSafe = 1

/
⎛

⎜
⎝1+ e

−

(
SafeRewardml − x0

σ

)⎞

⎟
⎠ (1) 

The probability of the animal choosing a safe reward over the 0.5 
utility gamble (PChooseSafe) was contingent on the safe option’s magni
tude (SafeRewardml) and the two free parameters, x0: the x-axis position 
of the curve’s inflection point, and σ: the function’s ‘temperature’. 
Importantly, this function’s inflection point represented the exact safe 
magnitude for which the animal should be indifferent between the set 
gamble and a given safe reward. Then we assigned utility to the lowest 
juice reward amount (0.0 utils) and highest juice amount (1.0 util) for 
the currently tested distribution (Fig. 2b). Since the animals only 
experienced trials set between these reward magnitudes, this con
strained all utility estimates between 0 util and 1 util. The x0-parameter 
could thus be used as a direct estimate of the gamble’s CE: at choice 
indifference, the safe reward had the same utility as the equiprobable 
gamble (p = 0.5 each outcome) formed of these two magnitudes, which 
amounted to 0.5 (i.e., [0.5 × 0.0 utils] + [0.5 × 1.0 util]). In the sub
sequent step, a new equiprobable gamble was set between 0 ml and the 
first CE’s ml value. The CE elicitation procedure was then repeated 
(logistic fitting, Fig. 2a); their CE had a utility of 0.25 utils (1/4 of 
maximal utility). In the next step, two new equiprobable gambles were 
set between the first CE’s ml value and the maximum magnitude of the 
currently tested reward distribution, i.e., 0.5 ml; their CE had a utility of 
0.75 utils (3/4 of maximal utility). Crucially, gamble/safe pairings for 
both gambles were interwoven in the same sequence – to ensure a 
similar spread in the presented rewards. Only sequences that contained a 
minimum of three different choice pairs (repeated at least 4 times) were 
used in the elicitation of CEs, and only those fractile sequences where at 
least 3 utility values could reliably be estimated were used in further 
analyses. The CEs assigned to each utility level, in each reward distri
bution, were compared via two-way ANOVA. 

2.4. Parametric estimation of utilities from aggregate and single choices 

Since the fractile method relied on stepwise, chained measurements 
(where later metrics depend on earlier ones), utility functions were 
estimated using a discrete choice model (DCM) fit to individual trials. By 
fitting a model on individual choices rather than aggregate CE se
quences, we avoided the propagation of estimation errors from earlier 
steps onto the next, and therefore reduced estimation biases for indi
vidual utility functions (Abdellaoui, 2000). Keeping the CE measures, 
however, allowed us to validate the parametric estimates of utility with 
the utility-CEs estimates from the fractile procedure. 

We built our choice model as is commonly done (McFadden, 2001; 
Stott, 2006): by modeling the likelihood that monkeys would choose the 
left option over the right one, given a set noise level, a side bias, and the 
utilities associated with the left and right options. This was achieved 
using a logit function: 

PchooseLeft =
1

1 + e− λ(EULeft − EURight − θ)
(2)  

where the probability of choosing the left option was a function of the 
expected utility difference between the left and right options, the tem
perature (or noise) parameter, λ, and θ which captured side bias para
metrically. The expected utility of each option (EULeft, EURight), as a 
function of their probability (p) and the utility function U(m), was given 
by the functional form: 

EU = p×U(m) (3) 

Probability distortions are symmetric and usually minor at p = 0.5 
(Ferrari-Toniolo et al., 2019; Stauffer et al., 2015); and so, to simplify 
our model, therefore we assessed the value of options solely as EU. The 
model’s best-fitting parameters were estimated by minimizing the 
following cumulative log-likelihood function: 

− LL(θ| y) = −

(
∑n

i=1
yi × log(PChoose Gamble)+

∑n

i=1
y′

i × log
(
PChoose Safe

)
)

(4)  

where y and y’ indicated a left or right choice (0 or 1), respectively, for 
each trial i; n was the total trial number for the session. 

We compared several parametric utility functions, within the above 
model, to ensure the most reliable utility predictions; the best-fitting 
functions would then be used for all further analyses. In accordance 
with the assumptions of the fractile method described earlier, each of 
these functions was to be anchored at 0% to 100% on the y-axis –– and 
we normalized the rewards on which they were fit to be between 0 and 
1. Carrying on this assumption allowed us to better compare the utilities 
later on. 

We fit a 1-parameter power function (U1-Power), a common practice in 
economics, 

U1− power(m) = mα (5)  

with m for juice magnitude (in ml) of a given reward outcome and α as 
power parameter of the function (if α < 1 utility function is convex, if α 
> 1 utility function is concave). 

Then, we fit two 2-parameter functions (U2-Prelec, U2-SCDF), 

U2− Prelec(m) = e− β×(− ln(m) )α
(6)  

with α-parameter as a curvature parameter of the function (generally, if 
α > 1 the function is S-shaped, if α < 1 the function is inverse S-shaped), 
and the β-parameter controls the elevation (or height) of the function. 
Although typically used to capture probability distortions, this mono
tonic function allowed us to capture risk-attitude reversals in a single, 
continuous function (Prelec, 1998). The function also behaves as a 
power law (i.e. like Eq. (5)) when the α parameter is set to unity – its 
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a) Scaled, identical utility functions in different reward distributions: the utility value of a 0.5 ml reward in the small distribution (blue curve, 100% utility) is scaled 
to the utility value of 0.5 ml reward in the large distribution (yellow curve). From left to right, utilities reshape assuming full-, partial-, and no adaptation. The three 
possibilities differ mostly in terms of the risk attitudes exhibited for rewards between 0 ml and 0.5 ml – under full adaptation they should differ, under no adaptation 
they should not. 
b) Utilities normalized according to the reward distribution from which they were estimated. Utilities are set on the same scale by normalizing across the domains of 
each function. Curves should overlap if utilities adapt fully (left) and fail to do so if there is no adaptation (right). If functions fail to adapt the low distribution utility 
is predicted to be identical to the first half of the full distribution utility curve. 
c) Predicting the direction of risk attitudes (r.a.) from utilities. For an equiprobable gamble made up of the two outcomes that fall at the edges of each grey shaded 
area, the horizontal black line depicts the expected value (EV) and the black dot above or below signals the direction in which we expect the certainty equivalent 
(CE). A black dot above the horizontal line signals risk-seeking behavior (or positive r.a.) and a CE of higher value than the EV, and a dot below the line signals risk 
averse behavior (negative r.a.). From left to right we again have predictions of r.a. given full-, partial-, or non-adaptive preferences. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 
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axiomatic roots allow it to represent both a power function and a 
sigmoid-type one. 

U2− SCDF(m) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

β ×
(m

κ

)1/α
, for 0 ≤ m ≤ β

1 − (1 − β) ×
(

1 − m
1 − β

)1/α

, for β < m ≤ 1
(7)  

is the 2-parameter CDF of a two-sided power distribution. Its α-param
eter controls the function’s curvature (in the same way it controls the 
curvature of Eq. (5)) with α > 1 leading to a utility function that is S- 
shaped, and α < 1 to one that is inverse-S shaped). The β-parameter 
controls the x-axis position at which the function’s curvature inverts, 
that is, its inflection point (this function is the functional form of the 
aforementioned RDU; Kontek & Lewandowski, 2018). 

Finally, we fit one 3-parameter function (U3-Power) 

U3− power(m) =

{
(m − γ)α

, for m ≥ γ
− β × (γ − m)

α
, for m < γ (8)  

serving as the s-shaped power function generally used to model PT 
(Stott, 2006). The inflection of the power functions is set at the γ 
parameter, and the function accounts for any loss aversion through its 
β-parameter accounts. Again, α controls the curvature of the function (if 
α > 1 utility function is S-shaped, if α < 1 utility function is inverse S- 
shaped). 

Sets of daily Bayesian Information Criterions (BIC) were defined on 
the log-likelihoods of the models ( BICLL = (k × ln (n)) − (2 × LogLi
kelihood) ). We selected the best fitting function using a one-way 
Friedman test followed by pairwise Wilcoxon signed-rank tests (Bon
ferroni-Holm corrected) and compared the estimated parameters spe
cific to each reward range using a one-way MANOVA. 

Cross-validation of the negative log-likelihoods was also performed. 
Each daily fit went through a 10-fold cross-validation procedure, 
whereby parameters were fit to 90% of daily choices and used to vali
date the model’s predictions on the remaining 10%. Sets of 10 negative 
log-likelihoods were averaged for each daily fit, providing one average 
-LL per day, per model, that would corroborate or contradict the BIC 
metrics described above. Once a model had been selected, we only 
proceeded with fits that fell below our classification of parametric out
liers: that is, those that fell within 3× the standard deviation of the 
average log-value of all monkeys’ utility parameters. We did so, using 
the data for all monkeys, as together they provided a less conservative 
and more realistic metric for what would be a ‘feasible’ utility function 
across all days for any monkey, and what would not. 

2.5. Defining preference adaptation metrics 

We compared the utilities estimated from choices in different reward 
distributions in one of two ways: the first, assuming that preferences 
were fixed and did not adapt to the distribution of possible rewards in a 
task (Fig. 3a); the second, assuming that preferences fully adapted to the 
reward spread and magnitude of the task at hand (Fig. 3b). To test for the 
former, utilities estimated in narrow distributions (i.e., low- and high- 
distribution) were compared to the full-distribution ones. For the 
assumption of full adaptation, utilities were compared sequentially – 
looking for differences in the shape of the utilities between different 
distributions. 

Most parametric utility functions had a unique inflection point, 
defined as a singular point where the utility function’s curvature 
reversed, and where the function’s first derivative was maximized. This 
inflection identified the precise reward magnitude for which the ani
mals’ risk attitude changed, and served as a good indicator for where 
and how the animals’ preferences would change depending on the 
variance and mean of the reward distribution. The inflection points 
elicited in different distributions were compared using a Kruskal Wallis 

test with Bonferroni-Holm corrected post-hoc analysis (Wilcoxon test). 
Another metric, the curvature ratio (CR) was defined as the 

normalized area under the utility functions (the function’s area divided 
by the total area in each distribution). The CR provided a direct, 
normalized metric of the convexity/concavity interplay of daily utility 
estimates – reflecting overall risk attitude to a greater degree than in
flection points. A linear utility function would have a CR of 0.5, as would 
perfectly symmetric S- or inverse S-shaped utilities. A CR above 0.5 
indicated that the functions fell above the diagonal and predicted more 
risk averse choices; conversely, a CR under 0.5 reflected more risk- 
seeking choices. The CRs measured in the different distributions were 
also compared using a Kruskal Wallis test followed by pairwise Wilcoxon 
rank-sum comparisons (Bonferroni-Holm corrected). 

A final series of metrics, defined as adaptation coefficients, allowed 
for the quantification of relative changes in CRs between utilities that 
had been estimated in consecutive reward distributions. 

A sequential adaptation coefficient (SAC) was calculated as: 

SAC =

( ∫ max
min Un(m)dm −

∫ max
min Un− 1(m) dm

)

∫ max
min Un− 1(m) dm

(9) 

It captured changes in the median utility of a given reward distri
bution n (Un(m)), where m represented every reward between the min
imum and maximum rewards in the tested distribution, relative to the 
median utility function in distribution n-1 (Un− 1(m)). Since all para
metric functions were defined from 0 to 1, comparing the area under 
each curve gave us a direct measurement of the difference between the 
utilities that captured preferences in consecutive reward distributions. 

A second coefficient, the general adaptation coefficient (GAC), 
compared the utility of low- and high-reward distributions to the utility 
estimated from an animal’s full reward distribution. The GAC placed the 
narrow-distribution utilities (i.e., the low- and high-distribution ones) 
relative to the shape of the full-distributions utility function. That is, a 
GAC of 0 would indicate that the narrow-distribution utilities are but 
segments of a fixed full-distribution one, whereas a GAC of 1 suggested 
that utilities kept a similar form but shifted to represent fixed preference 
relationships that simply mapped onto a new distribution. For any GAC 
where 0 <GAC < 1, preferences would be said to have partially adapted. 
To calculate this, narrow distribution utilities were rescaled to map onto 
the full distribution ones: the maximum value of the low-distribution 
became the utility value of the full-distribution utility at 0.5 ml, and 
the utility value of the full-distribution utility at 0.5 ml became the 
minimum value of the high-distribution. Then, the median utility of the 
full distribution (UFull) was rescaled (into Uadapt) to match the domain 
and image of narrow distribution utilities (ULow− distribution and 
UHugh− distribution). The GAC was given by 

GAC =

( ∫ max
min Upartial(m)dm −

∫ max
min Ufull(m) dm

)

( ∫ max
min Uadapt(m) dm −

∫ max
min Ufull(m) dm

) (10)  

where min and max are the minimum and maximum reward magnitudes 
in a narrow distribution condition. A GAC of 1 signaled full adaptation 
while a GAC of 0 indicated that no adaptation had taken place. Crucially, 
the GAC metric took no account of the order in which reward distribu
tions were tested; it relied instead on the full-distribution utility func
tions as a comparison template. Both the SAC and GAC’s accuracy in 
identifying “no-adaptation” were measured via Monte Carlo simulations 
that assumed monkeys’ choices were guided by a singular non-adapting 
utility function. 

2.6. Validating utility predictions from out-of-sample certainty 
equivalents 

To validate the predictions of the utility functions, CE measures were 
also gathered from binary choices presented outside of the fractile se
quences. In other words, the CE of gambles not used for utility estima
tion were gathered separately and used to corroborate the risk attitudes 
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predicted by the DCM-derived utilities. Two of the three animals were 
presented with three sets of four gambles unique to each reward dis
tribution for which we estimated CEs. We used these 12 CEs to validate 
the risk attitude predictions of the utility function estimated in each 
distribution. The gambles in the narrow reward distributions had a 
spread of 0.15 ml, while gambles in the full distribution had a spread of 
0.30 ml – keeping the relative spreads equivalent across the distribu
tions. Gamble means were also, once normalized, centered around the 
same relative values. In percentage points, each gamble spread over 30% 
of the reward distributions, and gamble was centered at a value repre
senting 25%, 45%, 65%, or 85% of the reward distribution (Fig. 2c). 

Taking the difference between the CEs of these gambles and their 
expected value (EV) as a proxy for risk attitude (CE – EV), the risk 

attitude estimated from these CEs were compared with the predictions 
from the discrete-choice utility curves. If the CE – EV metric were pos
itive, it signaled that the animals were risk-seeking (Fig. 3c). If instead, 
the measures were negative, the animals could be seen as being risk 
averse. Because of this, if the utility models imposed an S-shape that was 
unrealistic (and a consequence of the function used) the CE – EV fits 
would expose it right away: they would not transition from risk- 
seekedness to risk-aversion. These measures were repositioned relative 
to the inflection point at which DCM-derived utilities predicted a 
reversal of risk attitudes (i.e., the point of risk neutrality. Linear re
gressions were fit to the repositioned CE – EV metrics to validate DCM- 
derived infections: 

Fig. 4. CEs and utility functions elicited from daily fitting procedures. Order of distributions tested is captured vertically. Black dots represent CE-utility pairings 
elicited in individual experimental sessions using the fractile method; colored lines are discrete-choice utilities fitted (U2− Prelec) to the individual decisions that led to 
daily fractile CEs (blue, low narrow distribution; yellow, full distribution; green, high narrow distribution). Utility fits for Monkey A, from top to bottom, represent 
20 days (out of 21 due to outlier removal), 26 days, and 15 days. For Monkey B, we have 23 days, 7 days, and 13 days. Finally, Monkey C has a total of 13 days for the 
top panel, and 43 days for the lower one. In all cases, convexity of the functional fit signals risk-seeking behavior, concavity signals risk aversion. (For interpretation 
of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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CE–EV = β0 + β1(EV − inflection) (11) 

In the model, β0 Indicated the point at which CE measures became 
risk-neutral, and β1 Paralleled the ‘depth’ of utility’s curvature. These 
regressions allowed for the validation of predicted risk-attitudes. 

3. Results 

3.1. Experimental design 

To investigate the adaptation of utility functions to different reward 
distributions, macaque monkeys were presented with sequences of bi
nary choices while reward distributions were kept constant over 
consecutive days, and then suddenly changed. Because of this, the ani
mals experienced periods of relatively low reward magnitudes, periods 
of relatively high magnitudes, and periods with a mix of both (Figs. 1c, 
4). On each day the animals were presented with either a utility esti
mation sequence, an equivariant gamble sequence (out-of-sample vali
dation), or both. 

In utility estimation sequences, utility measurements were derived 
from the choices that animals made between sets of gambles and safe 
rewards. Using the fractile method (see Methods), utilities were derived 
from the certainty equivalents (CEs) of specific sets of binary, equi
probable gambles (p = 0.5 each outcome; the magnitude of safe reward 
that was subjectively equivalent to the gamble). In validation sequences, 
the animals’ risk preferences were measured directly using the CEs of 
out-of-sample binary, equiprobable gambles. These measurements were 
then used to corroborate the risk attitude predicted by utilities estimated 
in elicitation sequences. 

Sets of daily utilities were estimated for each reward distribution that 
the monkeys experienced. The way reward magnitudes (CEs) mapped 
onto these utilities could then be compared within and between the 
different rewards distributions. To do so, and because utilities were 
defined from 0% to 100% regardless of their distribution, the CEs were 
normalized relative to the maximum and minimum magnitudes in the 
appropriate reward distribution (see, Fig. 4). This allowed us to compare 
the relative change in preference intensity across the different reward 
distributions’ domains. As expected, higher utility values mapped onto 
higher reward magnitudes (higher CEs), but how they did so differed 
significantly depending on the current distribution. The same utility 
levels in different reward distributions (12.5%, 25%, 50%, 75%, and 
87.5% of their respective 1 util) did not map onto the same relative 
magnitudes (i.e., normalized CEs). We confirmed this statistically using 
a two-way ANOVA with the main factors being the utility level tied to 
individual CEs, and the reward distribution from which they had orig
inated. As one would predict, the ANOVA identified a significant main 
effect of utility level on the value of the estimated CEs (Monkey A: F(4, 
292) = 64.222, p = 6.637 ×10− 39; Monkey B, F(4,192) = 50.51, p =
4.107×10− 39; Monkey C: F(4, 293) = 538.261, p = 1.258×10− 133). That 
is, higher reward magnitudes were associated with higher utility values. 
The distribution in which utility-specific CEs had been estimated also 
had a significant main effect on the value of the estimated CEs (Monkey 
A: F(2, 292) = 349.918, p = 2.922×10− 78; Monkey B, F(2,192) = 8.994, 
p = 0.003×10− 3; Monkey C: F(1, 293) = 32.773, p = 2.563×10− 8). 
Together, these corroborated what we could see graphically (Fig. 4): 
higher CEs correlated with higher utilities in all distributions, but these 
CEs were of relatively lower value once a shift from low- to full- or high- 
distribution had occurred. Supporting the two other main effects, we 
found a significant interaction effect of utility level and distribution on 
the estimated CEs, in two of the three animals (Monkey A: F(8,292) =
1.005, p = 0.432; Monkey B, F(8,192) = 5.217, p = 1.829×10− 5; 
Monkey C: F(4, 293) = 8.593, p = 1.435 ×106). This, we found, was due 
to changes in the steepness of the utility-CE pairings between the 
different reward distributions – rather than simply shifting and recall
ing, utilities in different distributions seemed to follow different 
patterns. 

3.2. S-shaped utilities best fit choices 

Because of the fractile method’s reliance on aggregate, chained data 
to measure utilities (i.e., CEs; Farquhar, 1984; Machina, 1987), para
metric utility functions were fit to daily individual choices using a 
discrete choice model (DCM; see Eqs. (2)–(4)). The daily utility functions 
fit to the data were then used to understand the relationship between the 
monkeys’ risk attitude in each of the tested reward distribution. 

Several different functional forms of utility were compared (Eqs. (4)– 
(8)); the most reliable function was then used in further analyses. Power 
functions are commonly used to model utility functions. We, therefore, 
fit a 1-parameter power (U1-Power), 2-parameter CDF of a two-sided 
power (U2-SCDF), and a 3-parameter anchored power functions (U3- 

Power) to the animal’s CE-utility pairings. In addition to power-type 
functions, we looked at functions typically reserved for probability 
distortion modeling (Ferrari-Toniolo et al., 2019; Stott, 2006): the 1- 
parameter Tversky function (U1-Tversky) and the 2-parameter Prelec 
(U2-Prelec) – two monotonic functions that could readily take on the s- 
shape prescribed by PT, as well as mimic the shape of their simpler 
power function counterparts. All functions mapped reward magnitudes 
onto values from 0 to 1 (i.e., 0% to 100% of normalized utilities), and all 
but the 1-parameter power function could capture both risk-seeking and 
risk averse behaviors within the same reward distribution. 

In line with the utility values derived from the fractile measure
ments, and because previous experiments with the same animals had 
identified negligible probability distortions for p = 0.5 (Stauffer et al., 
2015), probabilities were treated as objective. That is, choices in the 
model relied on objective probabilities but subjective utilities. The pa
rameters that best described individual choices in each model were 
estimated through maximizing the cumulative log-likelihoods of the 
DCMs defined on individual experimental sessions (Eq. (4); see 
methods). 

To select the model (and, therefore, utility function) that best 
described the monkeys’ choices, we used the Bayesian information 
criteria (BIC) from all fitted models; the model with the lowest median 
BIC represented the best fitting model. Of the five tested utility func
tions, the U2-Prelec proved the most reliable in capturing choices (Fig. 5a). 
Though the model is normally reserved for probability distortion 
models, its flexibility resulted in the lowest BIC score as derived from the 
log-likelihoods of the discrete choice fits in 2 of 3 monkeys (Friedman 
test; Monkey A: Fr(4, 310) = 219.091, p = 2.327×10− 45; Monkey B: Fr(4, 
245) = 186.469, p = 2.221×10− 38; Monkey C: Fr(4, 275) = 177.122, p =
2.202 ×10− 36). In Monkey A, the BIC of U2-SCDF and the U2-Prelec proved 
statistically indistinguishable. Cross-validation confirmed the BIC find
ings, the U2-Prelec generated the highest average negative log-likelihoods 
across all functions (Fig. 5b). We, therefore, selected the U2-Prelec model 
for all further analyses. Before proceeding, we identified any parametric 
outliers as above or below 3× the standard deviation of the average log- 
value of all monkeys’ utility parameters. For that reason, we dropped 1 
fit for monkey A (for all remaining utilities, see Fig. 4). 

3.3. Risk preferences adapt to novel reward distributions 

Each fitted utility function provided a pair of parameters that could 
be compared to those elicited in the same or different reward distribu
tions. The curvature of these utility functions served as a direct indicator 
of the animal’s risk attitude for any given magnitude. Convexity re
flected risk-seeking behavior; concavity signaled risk aversion. From 
these parametric functions, three predictions could be made: utilities 
would either i) fully adapt to the novel reward distributions, ii) not 
adapt and remain constant (i.e., different parts of the same curve), or iii) 
utilities would partially adapt in a way that did not solely rely on the 
current reward distribution. To test for these predictions, further ana
lyses were split into two sets of hypotheses. One set looked at utilities 
under the assumption that no adaptation had occurred, the other 
assumed full utility adaptation between each of the reward 
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distributions. In the case of the no-adaptation assumption, the pre
dictions from utilities on identical reward magnitudes in the narrow 
distribution and full distribution were compared (Fig. 3a). For the full 
adaptation assumption, the utilities from sequential reward distribu
tions were normalized and compared, looking at any differences with 
the previous distribution’s pattern of risk attitude (Fig. 3b, c). If neither 
assumption proved accurate, then the assumption would be that neither 
full nor no adaptation had taken place – that is, preferences would have 
partially adapted. 

Comparing the functional parameters elicited in the different reward 
distributions provided us with a stringent test regarding the full adap
tation assumption. In the U2-Prelec function, the α-parameter represented 
the curvature of the function, while the β-parameter captured the rela
tive height of the curve. If these were identical across conditions, similar 
patterns of utility reflected preferences regardless of unique reward 
magnitudes in the different reward distributions. 

One-way MANOVA analysis on daily parameter estimates of the full 
model identified significant differences for all monkeys (Monkey A: F 
(2,58) = 30.806, Wilks’s λ =0.309, p = 1.818×10− 13; Monkey B: F 
(2,41) = 4.057, Wilks’s λ = 0.701, p = 0.008; Monkey C: F(1, 54) =
17.655, Wilks’s λ = 0.419, p = 3.752×10− 9). There was a significant 
effect of reward distribution on the parameters elicited in each condi
tion, for all animals (Fig. 6). Looking specifically at the ln-transformed 
parameters of the utility function (Fig. 6a), we found that there was a 

significant difference between parameters estimated in different reward 
distributions for all monkeys’ α-, or curvature-, parameters (Monkey A: F 
(2,58) = 16.511, p = 1.473 ×10− 4; Monkey B: F(2,54) = 6.414, p =
0.015; Monkey C: F(1,54) = 17.702, p = 9.808×10− 5). We did, however, 
only identify significant differences between Monkey A’s β, or elevation, 
parameters (Monkey A: F(2,58) = 99.564, p = 3.365 ×10− 14; Monkey B: 
F(2,41) = 2.947, p = 0.094; Monkey C: F(1,54) = 0.652, p = 0.423). The 
noise (λ) and side bias (θ) parameters, variables also accounted for by 
the model (Fig. 6b), proved significantly different across distributions 
for monkeys A (noise: F(2,58) = 22.390, p = 1.470 ×10− 5; side base: F 
(2,58) = 14.582, p = 3.288 ×10− 4) and C (noise: F(1,54) = 34.112, p =
3.067 ×10− 7; side base: F(1,54) = 17.843, p = 9.277 ×10− 5). For 
monkey B, we only identified a significant difference between the side 
bias parameters (noise: F(2,41) = 0.021, p = 0.887; side base: F(2,41) =
5.655, p = 0.022). 

To explore how these parametric differences influenced utility pat
terns in a way that was directly comparable between conditions, we 
compared the position of each utility function’s inflection points – the 
reward magnitude at which the behavior predicted by the utility func
tion flipped from risk-seeking to risk averse (or risk averse to risk- 
seeking, depending on the curvature of the utility function). The in
flection crudely summarized choice predictions with a single metric – 
one that had been previously used to signal animals’ ‘reference-points’ 
(Chen et al., 2006; Lakshminarayanan, Chen, & Santos, 2011). 

Fig. 5. Model comparisons within and across fitting procedures. Various models (differing on their utility function) are contrasted, the 2-parameter Prelec model that 
was used throughout this study appears in blue (U2-Prelec). These fits were also compared to a model built solely on expected value (where utility is the objective 
reward amount). 
a) Model selection using Bayesian Information Criterion. Daily BIC scores were calculated for each utility function using the log-likelihoods estimates of each discrete 
choice models fit. Lower BIC scores indicated better fits between the discrete choice model (DCM) predictions and individual measured choices pairings. 
b) Model selection using Cross-Validated negative log-likelihood estimates. Each daily fit went through 10-fold cross-validation; each data point thus represents the 
average, cross-validated negative log likelihood of each day. Higher cross-validated -LL scores indicated better predictions of the discrete choice model (DCM) fit to 
90% of daily choices relative the remaining 10% of choices. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 

P.M. Bujold et al.                                                                                                                                                                                                                               



Cognition 214 (2021) 104764

11

Importantly, since this metric was tied to CE values; one could easily 
observe if inflection points fell on similar magnitudes depending on the 
distribution in which it had been measured (Fig. 3a). 

From these inflection points, the assumption of no adaptation was 
tested by comparing the inflections gathered from the different reward 
distributions. We found significant differences between the distribution- 
specific inflections for all monkeys (Kruskal Wallis test; Monkey A: H 
(2,57) = 43.159, p = 4.247 × 10− 10; Monkey B: H(2,40) = 31.103, p =
1.762 × 10− 7; Monkey C: H(1,54) = 28.176, p = 1.108 × 10− 7). This 
translated into significant pairwise differences (Wilcoxon rank-sum) for 
all but Monkey B’s high and full distribution inflection points (Fig. 7a). 
Besides these, and for all other monkeys, the inflection points fell on 
different reward magnitudes for each of the reward distributions. If 
preferences had truly been non-adaptive, no significant difference across 
any of the conditions would have been observed. 

Since none of the results cleanly corroborated the no-adaptation 
hypothesis, the next step was to test for full adaptation. Rather than 
comparing the absolute position of the utilities’ inflection points, testing 
for full adaptation required predicting where inflection points from a 
past distribution would map onto the next distribution: the assumption 
being that if the same utility function simply shifted to a new 

distribution (i.e., fully adapted), the relative position of the inflection 
should be the same. An inflection at 0.3 ml in the low distribution, for 
example, would be placed at 0.15 ml in the full distribution, and vice 
versa. However, since an inflection of 0.3 in the low distribution would 
result in a negative magnitude when compared with the high distribu
tion, inflections of lower value than the minimum reward were set at the 
minimum, and inflections of higher value than the maximum reward 
were set to the maximum. Wilcoxon rank-sum tests identified significant 
differences between all consecutive comparisons in Monkeys A (Z 
(45)low-full: − 5.761, p = 8.351 × 10− 9; Z(40)full-high: − 4.790, p = 1.661 
× 10− 6), but none that reached significance for Monkey B (Z(29)low-high 
= 1.103, p = 0.270; Z(20)high-full = 1.941, p = 0.052) or C (Z(55)full-low =

1.931, p = 0.053; Fig. 6a). From a full adaptation perspective, this 
suggested that, while Monkeys A and C had not fully shifted their 
reference to accommodate the new distributions, Monkey B’s prefer
ences seemed to follow the same relative pattern across all rewards 
distributions (corroborated the lack of significant difference between 
the utility functions’ parameters). 

From the inflection points, the picture that emerged was one of (at 
least) partial adaptation. That is, the significant differences between the 
inflection points corroborated neither the idea of fully- or non- 

Fig. 6. Daily parameter estimates from discrete choice model (DCM) fits. Parameter estimates from low-distribution utilities are in blue, full-distributions are in 
yellow, and high-distribution are green. 
a) Daily ln-transformed parameter estimates for the utility function. Each point represents a parametric utility fit on a daily set of choices. The x-axis captures the 
curvature parameter of the U2-Prelec function: if lnα > 0 the function is S-shaped, if lnα < 0 the function is inverse S-shaped, it behaves as a power law if lnα = 0. The 
y-axis is elevation, or height: that is, the position of the function’s potential inflection relative the diagonal. The higher its value, the higher in its domain the 
function’s inflection can be found. 
b) Daily parameter estimates for the discrete choice logit function. Each point represents a parametric fit of the logit function that predicts the monkey’s likelihood of 
choosing the left-hand reward option. The x-axis captures the noise parameter, i.e., the certainty with which they pick an option (lower values lead to more stochastic 
choices). The y-axis captures any side-bias that may govern choices; positive values imply a right-hand side bias, negative values imply a left-hand side one. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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adaptative preferences. Nevertheless, because inflection points carried 
no information about the risk attitude that followed or preceded them, 
the inflection points could be similar even if the animals’ choices were 
not. To counter this, the previous comparisons were repeated using the 
area under each utility curve – a direct indicator of the convexity/con
cavity patterns within single utilities. Rather than representing a single 
point, the area under each curve reflected the order and intensity of risk- 
seeking or risk averse behavior throughout the reward distribution. 
Hereafter defined as curvature ratios (CRs, see methods), the areas 
calculated in each distribution were compared through Kruskal Wallis 
test (followed by pairwise Wilcoxon rank-sum post-hoc tests). The re
sults validated the earlier findings from the inflection comparisons: 
sequentially, there were significant differences across distributions for 
Monkey A and B (Monkey A: H(2,58) = 51.253, p = 1.224 × 10− 11; 

Monkey B: H(2,40) = 7.470, p = 0.024), but none of the post-hoc 
pairwise comparisons for monkey B reached significance once cor
rected for multiple comparisons (Wilcoxon rank-sum; Fig. 6b). This 
meant that Monkey B’s preferences were much closer to being fully 
adaptive than not. There were no statistical differences between monkey 
C’s CRs across conditions (Fig. 6b; H(1,54) = 0.042, p = 0.839). In 
essence, while the risk attitudes that Monkeys A and B exhibited differed 
between reward distributions, Monkey C seemed to exhibit relatively 
similar behavior in the two distributions (albeit with a slightly different 
inflection). 

Taken together, these results suggest that while no animal (except 
perhaps Monkey B) demonstrated full adaptation, some form of partial 
adaptation had occurred across every distribution in every animal. More 
specifically, while not fully adapted, Monkey A and C’s utilities did shift 

Fig. 7. Discrete choice utilities reflect partial adaption to reward distributions. 
a) Scaled utilities estimated from discrete choice models (DCM). Each curve represents the median of daily, distribution-specific parameter estimates; 95% Confi
dence intervals were estimated via boostrapping said parameters (random sampling with replacement, n = 10,000). Dotted blue lines represent predictions full- 
distribution utilities predicted to fully-adapt to low-distributions. The dotted green lines represent similar full-adaptation predictions in the high distribution. Bar 
graphs represent the median inflection point, i.e., the reward magntiude at which the curve goes from convex to concave – points are daily inflection points. Upper 
asterisks (*) indicate differences between daily inflection estimates in two sequential distributions (Wilcoxon rank sum test); Lower asterisks (*) indicate significant 
difference between the median predicted inflection from the previous tested distribution and the true inflection estimates of the next distribution (Wilcoxon rank 
sum). 
b) Normalized utilities estimated from DCMs. Each curve is the median of daily, distribution-specific parameter estimates normalized according to the minimum and 
maximum rewards in the tested distribution. Again, 95% confidence intervals were estimated via boostrapping (random sampling with replacement, n = 10,000). 
Points represent mean normalized certainty equivalents ± SEMs for each of the tested distribution. Bar graphs represent median curvature ratios (CRs) for each 
distribution; the relative concavity of each utility (concave >0.5; convex <0.5) – individual points are daily CRs. Upper asterisks (*) indicate significant differences 
between CRs estimated in sequential distributions (Wilcoxon rank sum). For each panel, blue comes from low-distribution utilities, yellow from full-distribution, and 
green from high-distribution. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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following changes in the task’s reward statistics. Their inflection points 
moved, but not to the degree predicted by a full shift of the previous 
distribution’s inflections. Where the two animals differed, however, was 
in the fact that Monkey C had maintained a very similar CR across 
conditions – likely due to the time elapsed between the different tests. 
Monkey B, on the other hand, maintained the relative inflection pre
dicted across conditions and a similar utility shape. 

3.4. Partial adaptation to reward distribution shapes risk preferences 

Two final metrics served to quantify the degree to which each ani
mal’s DCM-utilities had adapted between the different reward distri
butions: a sequential adaptation coefficient (or SAC; Eq. (9)) and a 
general adaptation coefficient (GAC; Eq. (10)). The SAC served to 
quantify how the utilities adapted sequentially as a function of the 
preceding reward distribution, the GAC served to position utilities eli
cited in distributions with low and high means relative to adaptive or 
absolute utilities elicited from the full distribution. 

The SAC represents the percent change in the CRs (the normalized 
areas under each curve) of successive utilities. It can be used to quantify 
differences in utilities within a single distribution, or, in this case, be
tween the median utilities of different distributions. Importantly, the 
SAC allowed us to quantify utility adaptation on a normalized scale: if 
utility patterns were fully adapting (i.e., fixed shape regardless of the 
distribution), the SAC would gravitate to 0. On the other hand, the SAC 
would become negative if utilities became more convex (since the area 
under the utilities would become smaller), and more positive if utilities 
became more concave. The other coefficient, the GAC, compared the 
utility of the low- and high-distributions with the full reward distribu
tion’s utility function. Using the full-distribution utility as the ‘default’ 
utility shape, the GAC measured how different narrow utilities were – 
ranging from no or 0% adaptation (i.e., narrow utilities were but seg
ments of an absolute full-distribution utility) to 100% adaptation (the 
utilities had a fixed form that simply adapted to new distributions). We 
used DCM-derived utilities to calculate these adaptation coefficients. 

Using the SAC to quantify how median utilities changed between 
distributions, we found that the differences between utilities of Monkey 
A amounted to SACs of 0.37 and 0.34 for the full- and high-distributions, 
respectively; 0.11 and − 0.14 for Monkey B’s high- and full-distribution, 
and 0.01 for Monkey C’s low distribution. In utility terms, this meant 
that Monkey A’s utilities predicted behavior that was 37% and 34% 
more risk averse in consecutive distributions. Monkey B also became 
more risk averse when going from the low distribution to the high dis
tribution but became more risk-seeking again once choosing in the full 
distribution. The direction of these changes seemed to reflect the ‘po
sition’ of the tested distributions relative to the past distributions the 
animals had experienced. In line with this idea, Monkey C had no recent 
experience with the full-distribution when low-distribution utilities 
were estimated; the measured utilities were thus almost identical. 

The GACs calculated for each animal were also highly informative in 
positioning low- and high-distribution utilities relative to the full dis
tribution ones (see dotted lines in Fig. 7a). Monkey A, for example, had a 
GAC of 0.51 for the small distribution, and a GAC of 0.21 for the high 
distribution. The high GAC essentially meant that the low-distribution 
utility was halfway between being only a segment of a fixed full- 
distribution utility and being a fully rescaled versions of the full- 
distribution utility; the low GAC suggested that high-distribution utili
ties were much closer to being segments of a larger, absolute utility 
function. For Monkey B, low-distribution utilities matched a GAC of 
1.14, i.e. The utilities of the low distribution had an almost identical 
shape to those in the full-distribution, and the high-distribution utilities 
had a GAC of 0.69, a bit more than halfway between no- and full- 
adaptation. Monkey C, corroborating earlier findings, had a GAC be
tween low and full-distributions of 0.98 – they were, for all intents and 
purposes, identical. 

To ensure the reliability of the above findings, and of our DCM- 

procedure in correctly describing “no-to-full” utility adaptation pat
terns, we simulated and fit daily choice sequences that would mimic a no 
adaptation condition - using the same choice sequences the monkeys had 
previously experienced. Taking the median parameters of monkeys’ full- 
distribution utilities, we first simulated utility-equivalent choices for 
low- and high-distribution fractile sequences, then estimated the pa
rameters of distribution-specific utility functions given our DCM-fitting. 
Specifically, using monkey B’s daily choice sequences, the above Monte 
Carlo simulation was run on each of the low- and high- distribution daily 
trial sequences (n = 1000), the daily median parameters were then 
collected to repeat SAC and GAC analyses. The procedure confirmed that 
- even in the extreme case of monkeys having non-adaptive utilities - the 
U2-Prelec model would reliably identify parameters that best captured 
underlying preferences (and that, using the same number and type of 
trials that were used for our results; see Fig. S1). For example, given our 
estimation procedure, monkey B’s theoretical low-distribution GAC of 
0 translated to a simulated GAC of 0.01, and that of the high-distribution 
into a GAC of 0.10. We could thus be confident in the model’s ability to 
capture and describe “non-to-fully” adaptive preferences. 

Finally, going back to the original idea that preferences are shaped 
by one’s expectations, we looked at the shape of each DCM-utility 
relative to the task’s daily reward statistics. Though even the initial 
distribution’s utility inflections never truly followed the task’s mean 
reward (one-sample t-test; Monkey A: t(20)low-distribution = 3.849, p =
0.001; Monkey B: t(23)low-distribution = 2.534, p = 0.019; Monkey C: t 
(13)full-distribution = 4.267, p = 1.103 × 10− 4), the difference between 
mean rewards and inflections became markedly larger for Monkeys A 
and B when they were introduced to new reward distributions (Kruskal- 
Wallis test; Monkey A: H(2,58) = 39.218, p = 3.047 × 10− 9; Monkey B: 
H(2,40) = `16.806, p = 2.242 × 10− 4). Importantly, the differences were 
always skewed towards past distributions. As reward distributions 
changed, Monkey A and B’s references appeared to lag in fully adapting 
to the new distributions. Monkey C, on the other hand, saw no differ
ences between its two reward distributions (H(1,54) = 0.021, p = 0.884) 
– presumably because of the 54-week gap between the two sets of 
measurements. 

3.5. Confirming risk preference reversals 

While the DCM-fits largely predicted clear inflection points in 
monkeys’ risk preferences (Fig. 7a), a number of inflection points near 
the maxima and minima of reward distributions (particularly in Monkey 
B) highlighted the need to validate the s-shaped utility pattern identified 
by the U2-Prelec model. 

To address this concern, we compared the risk attitudes predicted by 
the DCM-derived utilities to real risk attitudes measured in different, 
out-of-sample choices (i.e., validation sequences). The CEs of equi
probable and equivariant gambles were recorded in each of the reward 
distributions, and the differences between these CEs and the gambles’ 
EVs (CE – EV) were used to indicate the animals’ risk attitudes. Every 
gamble had a magnitude spread equivalent to 30% of the respective 
reward distribution, and their EV were anchored at 25%, 45%, 65%, and 
85% of the testing distribution’s magnitudes (Fig. 2c). If the difference 
between a gamble’s CE and its EV (CE - EV) was positive, it reflected a 
risk-seeking attitude towards the gamble; if, on the other hand, this 
value was negative, the animal was said to be risk averse. These ‘vali
dation’ measurements were gathered in two of our three animals 
(namely Monkeys A and B). 

The CE - EV attitude predictions were compared to the risk attitude 
predictions from the DCM utility estimates (Eq. (11)). If the S-shaped 
pattern of utilities elicited for each animal were accurate, choices 
involving magnitudes that fell below the utility’s inflection point should 
favor risky options whereas choices above it should favor safer options. 
We found that this was indeed the case and that CEs in all distributions 
reflected both the risk-seeking and risk averse choices predicted by 
DCM-derived utility functions in all but monkey B’s full distribution 
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(Fig. 8). 

4. Discussion 

The present study investigated the role of task-specific expectations 
in shaping the preferences of macaque monkeys. In line with human 
research on reference-dependent preferences (Arkes et al., 2008, 2010; 
Koszegi & Rabin, 2007), the animals’ risk preferences shifted following 
changes to the reward distribution they could expect from the task at 

hand. As the rewards that the task delivered got higher, the reward 
magnitude at which their risk attitudes shifted also became higher. 
Modeling the utility functions that best captured the animals’ behavior, 
we found that changes in their risk-preferences mimicked the changes 
predicted in models like Prospect Theory (Kahneman & Tversky, 1979): 
the points at which utility shifted from convex to concave (i.e., when 
preferences shifted from risk-seeking to risk averse) closely followed 
what could be considered plausible expectations in the task. 

Taking the position of S-shaped utilities as a proxy for the animal’s 

Fig. 8. Discrete choice utilities better predict out-of-sample risk attitudes. 
a) Differences between the certainty equivalent (CE) and expected value (EV) of out-of-sample, equivariant gambles reflects the risk attitudes predicted by utilities. 
Each point represents a CE – EV measure from individual CE estimates. For CE-EV measures above 0 reflect risk-seeking behavior, points below 0 reflect risk averse 
behavior. The transition from risk-seeking to risk averse behavior should correlate with the inflection points predicted from utility functions: dotted lines represent 
the median inflection from discrete choice model (DCM)-derived utilities. 
b) DCM derived inflections (better) predict risk attitudes as measured in out-of-sample gambles. CE – EV metrics positioned as a function of a gamble’s EV position 
relative the median DCM-derived inflection for each distribution. The x-axis captures the relative difference between the distribution’s inflection point (in ml) and a 
gamble’s EV (in ml). Dotted lines represent linear regression lines across all CE – EV measurements (Monkey A: p = 1.03 × 10− 35; Monkey B: p = 1.90 × 10− 31). 
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expectations, our findings suggest that the monkeys partially adapted 
their preferences to account for new reward distribution in a task. While 
they readily adapted to novel rewards, they did not readily ignore (or 
forget) reward information that was no longer relevant to the task. 
Rather than relying solely on the current installment of the task to build 
their expectation, the monkeys appeared to also consider the distribu
tion of past rewards – particularly the maxima and minima in a distri
bution - in shaping their preferences (i.e., their utility curve). The effect 
of range extremes has also been found to influence risk-attitudes in 
humans, and even pigeons (Ludvig et al., 2014). Interestingly, though 
macaque monkeys usually tend to base context-specific judgments on 
only a few trials (that is, they adjust their choices according to the 
outcomes of recent own choices; e.g., Barraclough, Conroy, & Lee, 2004; 
Grabenhorst et al., 2019; McCoy & Platt, 2005), our results suggest that 
experiencing new extremes may lead to slower but more entrenched 
changes for monkeys’ preferences. Indeed, much like humans who can 
quickly adapt trial-by-trial (Hayden & Platt, 2009), our monkeys also 
showed that this likely takes place within much broader, more gener
alized learning. In these cases, while more reward is better than less, 
more is even better when there was less reward just before. Thus, our 
results are compatible with economic theory and experimental findings 
and provide an experimental approach for formalizing utility 
adaptation. 

Monkeys A and B, for example, reliably shifted their reference point 
when possible rewards went from lower to higher magnitudes. When 
looking at the utility function that best represented their preferences, the 
animals’ utilities appeared to scale instantly to represent the now 
broader realm of possible rewards. Conversely, when possible rewards 
were restricted to high magnitudes only (i.e. high-distribution), the 
animals did not adjust their preferences in a way that accounted for the 
unavailability of lower magnitudes – even after many days. Where they 
had previously been flexible in rescaling preferences, the animals’ 
preferences in the high distribution (where low rewards were never 
delivered) stubbornly reflected the higher-half of full-distribution utili
ties. And while the shift from low to high distribution seemed to induce 
partial, almost full adaptation – the shift from full to high distribution 
reflected a move along a fixed, absolute utility instead. 

The unusual testing regimen, i.e., the multi-week requirement to 
meaningfully quantify ‘long-term’ adaptation, meant that we could only 
commit a limited amount of days to record choices in each distribution 
setting. Because of the timeline, if a monkey would not participate in the 
experiment on a given day, we would lose a day of gathering results 
(they had observed the range, so we could not discount learning). For 
that reason, not all monkeys have the same amount of days recorded in 
each reward range. Future work on long-term adaptation may seek to 
address this limitation or allow for a more flexible timescale. With that 
said, the realities of our setting also provided an advantage: 54 weeks 
after our initial round of experiments, we were able to again work with 
Monkey C who had been allocated to a different experiment in the 
meantime. In doing so (and because he had since only experienced re
wards between 0 and 0.5 ml), we were able to observe his preferences 
having readjusted to lower expectations. It allowed us to rigorously 
observe the adaptation of preference after over a year. While Monkeys A 
and B experienced every distribution in the span of just a couple of 
months, the effects of past high rewards on Monkey C would have been 
minimal. In that respect, it came as no surprise that Monkey C’s lower 
distribution utilities took the form of fully rescaled full-distribution 
ones. A similar effect was seen in previous estimations with Monkey 
A’s utilities (see, Genest et al., 2016). 

The idea that preferences adapt to fit a given distribution is neither 
new nor unfounded (Brunswik, 1956; Gigerenzer, Hoffrage, & Klein
bolting, 1991; Glöckner, Hilbig, & Jekel, 2014; Weber & Johnson, 
2008). Indeed, while prospect theory rests on reference-dependence, 
several newer models mimic RDU in that they claim that the values 
with which we imbue our options rely on the other options we have at 
our disposal (Hunter & Gershman, 2018; Loomes & Sugden, 2006; 

Parducci, 2012; Steward, Chater, Stott, & Reimers, 2003; Yaari, 1987). 
Likewise, it has long been known in psychology and neuroscience that 
distribution-adaptation is an inherent feature of the brain (Louie & De 
Martino, 2013). In sensory systems, for example, neuron’s maximize 
their efficiency by tuning their firing rates to match the distribution of 
sensory signals (Carandini & Heeger, 2012; Laughlin, 1981) – the same 
is thought to occur, to varying degrees, in the brain areas that encode 
value (Burke, Baddeley, Tobler, & Schultz, 2016; Kobayashi, Pinto de 
Carvalho, & Schultz, 2010; Louie, Glimcher, & Webb, 2015; Padoa- 
Schioppa, 2009; Tobler, Fiorillo, & Schultz, 2005; Tremblay & Schultz, 
1999). Specifically, and supporting the idea of distribution-dependent 
utility, neurons in the primate prefrontal cortex have recently been 
recorded adapting their firing rate to different reward distributions in a 
way similar to our animals’ utility curves. In a study by Conen & Padoa- 
Schioppa, 2019, rhesus macaques only partially rescaled the value of 
juice rewards relative to the other possibilities in a given block of 
choices. When recording from neurons in monkeys’ orbitofrontal cortex, 
the researchers found that the neural code mimicked behavioral mea
surements in that it partially adapted to match the specific reward dis
tributions of different blocks within the broader context of all past 
rewards. Crucially, two processes seemed to drive this adaptation: the 
first, a slow and adaptive learning process about the outcomes one can 
expect (e.g., reinforcement learning; Bavard et al., 2018; Rudebeck & 
Murray, 2014; Wilson, Takahashi, Schoenbaum, & Niv, 2014), which 
involves the orbitofrontal cortex and its interaction with the dopami
nergic system (for review, see Soltani & Izquierdo, 2019) and might 
explain the role of experience in shaping current preferences. The sec
ond process involves a rapid weighing of rewards relative to the deci
sion-maker’s present context (e.g., the canonical process of divisive 
normalization, whereby neurons tune their firing rates to match the 
distribution of available stimuli; Louie et al., 2013; Hiroshi Yamada, 
Louie, Tymula, & Glimcher, 2018; Zimmermann, Glimcher, & Louie, 
2018). Building on the above, an interesting avenue that was not 
explored in the present study would be to quantify how rapid, 
within-session adaptation interacts with multi-day learning and 
expectation-building. The fractile method we used proves a limitation 
on this front since elicitation sequences require multiple ‘bisection’ 
blocks that do not cover the entire reward range. However, shorter, 
block-wise utility elicitation paired with the recent developments of 
‘utility’ models that capture both learning and rapid contextual adap
tation may prove useful for future work (e.g., Tymula & Glimcher, 2019; 
Webb, Glimcher, & Louie, 2020). 

Partial adaptation is likely to underlie the brain’s ability to maximize 
‘local’ decisions, all while placing these decisions in a much broader 
context (i.e. relative past experiences; Conen & Padoa-Schioppa, 2019; 
Fairhall et al., 2001; Rustichini, Conen, Cai, & Padoa-Schioppa, 2017). 
When comparing similarly-priced wines, for example, we manage to 
select our favorite from relatively narrow distributions (similar prices) 
while still placing our selection relative to a much broader price distri
bution (our past experiences with wines). It has recently been suggested 
that this ability to flexibly optimize ‘local’ decisions while keeping track 
of past outcomes underlies the formation of cause-and-effect relation
ships in our thinking (Bavard et al., 2018). If this is the case, then the 
changes observed in our animals’ utility functions point to the animals 
building complex expectations, or an internal model, about the rewards 
they could receive in the task at hand. 

Overall, and in line with the current view from neuroeconomics, this 
study showed that the preferences of macaque monkeys’ scale in a way 
that reflects both inherent properties (and indeed limitations) of the 
brain and the statistics of the environment at hand. It is intuitive to 
assume that the choices of monkeys, as well as those of humans as 
evolutionary close cousins, reflect a number of external influences, the 
most plausible being recent experiences or predictions of future varia
tions. In this way, primates can tailor their choices to the best possibil
ities and thus maximize their returns. 
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